

Readme

	SKA CI/CD Templates Repository
	Disclaimer

	Templates

	How to Use

	Design

SKA CI/CD Templates Repository

This repository holds the common job templates used by the pipelines in the SKA Projects.

It is developed to provide common functionality across SKAO CI/CD by calling the make targets residing in ska-cicd-makefile [https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README] repository.

For any help requests, suggestions, improvements or any issues you may have with the content of this repository please drop us a message on #team-system-support [https://skao.slack.com/archives/CEMF9HXUZ] channel at SKAO slack.

Disclaimer

The latest releases of ansible (v7.1.0 and v7.0.0) introduced a bug into ansible-core (v2.14.1) that breaks ansible-lint.
In order to fix this the ansible version being installed is going to be pinned to version 6.7.0 and should go back to the latest version once the bug has been patched.
Ansible-lint version has also been temporarily pinned to version 6.11.0

Templates

Currently the following artefact types are supported:

	ansible: ansible collections

	helm: Helm Charts

	oci-images: OCI Images

	python: Python Code and Artefacts

	raw: Raw Artefacts

	conan: Conan Artefacts

	rpm: RPM Artefacts

	gpu: Python Code and Artefacts with GPU support for the testing stage

	terraform: Terraform Code

In addition, several use-cases for a typical repository are also supported:

	docs: Sphinx documentation support for ReadTheDocs

	k8s: Kubernetes in-cluster testing

	release: GitLab tag based release and changelog automation

	finaliser: GitLab CI Badges and Pipeline workflow rules

	tmdata: Upload telescope model data

	xray: upload BDD test results to XRAY

Template Inheritance

There is a hierarchy to the templates which express a certain amount of inheritance, through nested includes:

graph LR

 NodeRoot[Template Hierarchy] --> NodeFinaliser[finaliser.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeRelease[release.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeDocs[docs.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeRaw[raw.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeRPM[rpm.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeConan[conan.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeAnsible[ansible.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeHelm[helm-chart.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeK8s[k8s.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeK8sTestRunner[k8s-test-runner.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeDeploy[deploy.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeOCI[oci-image.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodePython[python.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeTerraform[terraform.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeTMData[tmdata.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeXray[xray-publish.gitlab-ci.yml]
 NodeRoot[Template Hierarchy] --> NodeConfigCapture[config-capture.gitlab-ci.yml]

 subgraph "Finaliser/Badge Templates"
 NodeFinaliser --> NodeFinaliserRules[rules.gitlab-ci.yml]
 end

 subgraph "Release Management Templates"
 NodeRelease --> NodeReleaseChangeLogBuild[changelog-build.gitlab-ci.yml]
 end

 subgraph "Docs Templates"
 NodeDocs --> NodeDocsBuild[docs-build.gitlab-ci.yml]
 NodeDocs --> NodeDocsPages[docs-pages.gitlab-ci.yml]
 end

 subgraph "Raw Package Templates"
 NodeRaw --> NodeRawBuild[raw-build.gitlab-ci.yml]
 NodeRaw --> NodeRawPublish[raw-publish.gitlab-ci.yml]
 end

 subgraph "RPM Package Templates"
 NodeRPM --> NodeRPMBuild[rpm-build.gitlab-ci.yml]
 NodeRPM --> NodeRPMPublish[rpm-publish.gitlab-ci.yml]
 end

 subgraph "Conan Package Templates"
 NodeConan --> NodeConanBuild[conan-build.gitlab-ci.yml]
 NodeConan --> NodeConanPublish[conan-publish.gitlab-ci.yml]
 end

 subgraph "Ansible Templates"
 NodeAnsible --> NodeAnsibleLint[ansible-lint.gitlab-ci.yml]
 NodeAnsible --> NodeAnsiblePublish[ansible-publish.gitlab-ci.yml]
 end

 subgraph "Helm Templates"
 NodeHelm --> NodeHelmLint[helm-chart-lint.gitlab-ci.yml]
 NodeHelm --> NodeHelmBuild[helm-chart-build.gitlab-ci.yml]
 NodeHelm --> NodeHelmPublish[helm-chart-publish.gitlab-ci.yml]
 end

 subgraph "Kubernetes Templates"
 NodeK8s --> NodeK8sBuild[k8s-test.gitlab-ci.yml]
 NodeK8sTestRunner
 end

 subgraph "Xray Templates"
 NodeXray
 end

 subgraph "Config Capture Templates"
 NodeConfigCapture
 end

 subgraph "Deployment Templates"
 NodeDeploy --> NodeDeployDev[deploy.dev.gitlab-ci.yml]
 NodeDeploy --> NodeDeploySharedDev[deploy.shared.dev.gitlab-ci.yml]
 NodeDeploy --> NodeDeployIntegration[deploy.integration.gitlab-ci.yml]
 NodeDeploy --> NodeDeployStaging[deploy.staging.gitlab-ci.yml]
 end

 subgraph "OCI Image Templates"
 NodeOCI --> NodeOCILint[oci-image-lint.gitlab-ci.yml]
 NodeOCI --> NodeOCIBuild[oci-image-build.gitlab-ci.yml]
 NodeOCI --> NodeOCIPublish[oci-image-publish.gitlab-ci.yml]
 NodeOCI --> NodeOCIScan[oci-image-scan.gitlab-ci.yml]
 end

 subgraph "Python Templates"
 NodePython --> NodePythonLint[python-lint.gitlab-ci.yml]
 NodePython --> NodePythonBuild[python-build.gitlab-ci.yml]
 NodePython --> NodePythonTest[python-test.gitlab-ci.yml]
 NodePython --> NodePythonPublish[python-publish.gitlab-ci.yml]
 end

 subgraph "Terraform Templates"
 NodeTerraform --> NodeTerraformLint[terraform-lint.gitlab-ci.yml]
 end

 subgraph "Telescope Model Data Templates"
 NodeTMData --> NodeTMDataBuild[tmdata-package.gitlab-ci.yml]
 NodeTMData --> NodeTMDataPublish[tmdata-publish.gitlab-ci.yml]
 end

To learn more about how to use the templates, follow How to Use section.

To learn more about how the templates are designed and integrated, follow Design section.

Pipeline Rules

The finaliser.gitlab-ci.yml file includes top-level workflow rules(rules.gitlab-ci.yml) that enables the Merge Request Pipelines and prevents duplication with the Branch Pipelines. Please see below where the different types of pipelines are described. It also enables the use of Merged Result pipelines.

Branch Pipelines: pipelines that target a source branch, i.e. the pipeline is run against what you pushed to the remote every time.

Merge Request Pipelines: pipelines that are attached to a merge request. They are different because they only run against commits associated with a merge requests

rules.gitlab-ci.yml file(workflow:rules) defines whether the pipeline should be created or not at all.
This is to manage branch and merge request pipelines while preventing duplicate pipelines. For example, without any rules if there is an open MR, there would be two identical pipelines running, one for the MR pipeline and the other for the branch pipeline. The added workflow:rules prevents this by enabling/disabling one of the pipeline types.
The current workflow is if there are no open merge requests, a branch pipeline is created. If there is an open merge request, then the branch pipelines are disabled and merge request pipelines are enabled. So, there would only be single pipeline in the end.

The above is needed for the merged result pipelines.
It enables the pipeline to really see the results of the master branch pipeline as if the changes are merged instead of just seeing the results for the source branch.

To illustrate, It can easily happen that a new commit in a branch works (i.e. the pipeline status is green, and as a result the Merge Request seems safe to merge), while in fact the merge breaks the pipeline in the master branch.
By using Merge Result pipelines we can potentially avoid this, by running pipelines on what the master branch would like if our changes were merged. This setting is enabled for all projects in SKAO group. To learn more, please have a look at the GitLab blog [https://about.gitlab.com/blog/2019/09/11/how-to-avoid-broken-master-with-pipelines-for-merge-requests/] post about it.

There are some conditions:

	The MR has to be ready, i.e. no Draft or WIP tags in the MR title

	There shouldn’t be any merge conflicts
If the MR is not mergeable (above conditions), then what we have is the old pipelines that are targeting the source branch as usual. However, these are now labelled as detached by GitLab (I think poor choice of words) to differentiate them from merged result pipelines. Fear not! They are still targeting your branch so you are not actually in a detached state from your branch.

How to Use

First, add the ska-cicd-makefile [https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile] repository as a submodule to your project.

git submodule add https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile.git .make

Make sure that you add and commit the .gitmodules file and .make directory:

git add .gitmodules .make
git commit -s

Now include the *.mk files in your Makefile:

include .make/*.mk

Or, you can include specific ones like below. Note that you have to include the ones you are going to use in your pipeline.

include makefile targets for Kubernetes management
-include .make/k8s.mk

The following should be standard includes
include core makefile targets for release management
-include .make/base.mk

include your own private variables for custom deployment configuration
-include PrivateRules.mak

To ensure that your GitLab CI pipeline automatically clones submodules, add the following to .gitlab-ci.yml:

variables:
 GIT_SUBMODULE_STRATEGY: recursive

In most scenarios, include the appropriate main template files in your repositories gitlab-ci.yml file. To include python, oci, kubernetes and documentation support:

include:
 # Python
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/python.gitlab-ci.yml'
 # Terraform
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/terraform.gitlab-ci.yml'
 # Docs pages
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/docs-pages.gitlab-ci.yml'
 # k8s steps
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/k8s.gitlab-ci.yml'
 # configuration capture
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/config-capture.gitlab-ci.yml'
 # OCI Images
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/oci-image.gitlab-ci.yml'
 # Raw
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/raw.gitlab-ci.yml'
 # RPM
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/rpm.gitlab-ci.yml'
 # Conan
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/conan.gitlab-ci.yml'
 # Tag Based GitLab Release Management
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/release.gitlab-ci.yml'
 # .post step finalisers eg: badges
 - project: 'ska-telescope/templates-repository'
 file: 'gitlab-ci/includes/finaliser.gitlab-ci.yml'

Note, finaliser.gitlab-ci.yml is required by every repository as it includes functionality for ci-badges and workflow rules which is explained in Templates section.

If you don’t require every job for an artefact in your project, you could also just include the necessary part:

include:
 # We don't need python build and publish
 # as we are not releasing a python artefact
 - project: 'skatelescope/templates-repository'
 file: 'gitlab-ci/includes/python-lint.gitlab-ci.yml'
 - project: 'skatelescope/templates-repository'
 file: 'gitlab-ci/includes/python-test.gitlab-ci.yml'

If you want to get detailed help on what each job is going to do, run make long-help to get additional documentation on the actual make targets.

Customisation

All of the jobs should be configured by their respective make-targets and variables and hooks provided. Follow ska-cicd-makefile [https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README] to learn more.

Example; If you want to include additional pytest flags, you can define PYTHON_VARS_AFTER_PYTEST variable in your main Makefile as below:

PYTHON_VARS_AFTER_PYTEST = -m 'not post_deployment' --forked \
 --disable-pytest-warnings

Note that although you can achieve the same effect for the pipelines by providing variables in your gitlab-ci.yml file as below, it is not recommended! as it makes the local development and pipeline behaviour diverge from each other.

NOT RECOMMENDED!
variables:
 - PYTHON_VARS_AFTER_PYTEST: "-m 'not post_deployment' --forked \
 --disable-pytest-warnings"

Design

For every artefact type in SKAO, there should be a template that addresses some of the common steps in DevSecOps Lifecycle:

	Lint

	Build

	Test

	Package

	Release

	Deploy

Each artefact type has its own template file in <artefact-type>.gitlab-ci.yml which includes avaiable steps. Each step have its own <artefact-type>-<step>.gitlab-ci.yml file to describe when and how it should run.

For python;

│ python.gitlab-ci.yml
├─ python-lint.gitlab-ci.yml
├─ python-build.gitlab-ci.yml
├─ python-test.gitlab-ci.yml
├─ python-publish.gitlab-ci.yml

You can check the contents of the python.gitlab-ci.yml file and investigate the actual step template files under gitlab-ci/includes directory.

For each job, script part should just compose of calling the make targets associated with the artefact and step. before-script part provides checking if the target exists and provides documentation.

Providing that the underlying implementation is the same as makefile targets allows repositories and developers to be flexible in their own implementation and aligns both the development and pipeline environment. You can read more on how to customise the make targets in makefile repository documentation [https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README]

rules part describes when the job should be included in the pipeline to eliminate unnecessary/invalid jobs in the pipeline. To push artefacts to GitLab or CAR from the publish stage jobs, the git tags are used as identifier.

General Layout

For any artefact type:

	the main <artefact>.gitlab-ci.yml file has only the consisting include jobs.

	Each lifecycle step in a pipeline is named with the correct prefix and should reside in its own <artefact-type>-<step>.gitlab-ci.yml file.

	Each step template file includes the necessary jobs starting with the step name <artefact-type>-<step>.... Multiple jobs are provided to handle different use-cases. i.e. to handle python modern/legacy build system, to manage development and production publishing of artefacts etc.

	Each job performs any preliminary actions in before_script such as logins, config settings for the environment.

	Each job just calls the respective make targets and passes any variables that needs to be used in script part. The script itself should not have any logic to not deviate from the local development workflow.

If we follow the python example as described above. The main python.gitlab-ci.yml file only includes other jobs:

unbrella include for all Python life cycle stages
include:
 # Linting stage
 - local: gitlab-ci/includes/python-lint.gitlab-ci.yml
 # Build stage
 - local: gitlab-ci/includes/python-build.gitlab-ci.yml
 # Test stage
 - local: gitlab-ci/includes/python-test.gitlab-ci.yml
 # Publish stage
 - local: gitlab-ci/includes/python-publish.gitlab-ci.yml

and the python-publish.gitlab-ci.yml describes the actual python build stage jobs. As you can see the necessary variables are passed to the make python-publish target and rules is used to separate tag pipelines from development pipelines to publish to central artefact repository or gitlab registry, respectively.

Python publish stage template
python-publish-to-car:
 stage: publish
 tags:
 - k8srunner
 image: $SKA_K8S_TOOLS_BUILD_DEPLOY
 before_script:
 - '[-f .make/python.mk] || (echo "File python.mk not included in Makefile; exit 1")'
 - 'make help | grep python-publish'
 script:
 - make PYTHON_PUBLISH_USERNAME=${CAR_PYPI_USERNAME} PYTHON_PUBLISH_PASSWORD=${CAR_PYPI_PASSWORD} PYTHON_PUBLISH_URL=${CAR_PYPI_REPOSITORY_URL} python-publish
 rules:
 - if: '$CI_COMMIT_TAG'
 exists:
 - pyproject.toml
 - setup.py

python-publish-to-gitlab:
 stage: publish
 tags:
 - k8srunner
 image: $SKA_K8S_TOOLS_BUILD_DEPLOY
 allow_failure: true
 before_script:
 - '[-f .make/python.mk] || (echo "File python.mk not included in Makefile; exit 1")'
 - 'make help | grep python-publish'
 script:
 - make PYTHON_PUBLISH_USERNAME=gitlab-ci-token PYTHON_PUBLISH_PASSWORD=${CI_JOB_TOKEN} PYTHON_PUBLISH_URL=https://gitlab.com/api/v4/projects/${CI_PROJECT_ID}/packages/pypi python-publish
 rules:
 - exists:
 - pyproject.toml
 - setup.py

Index

 nav.xhtml

 Table of Contents

 		
 <no title>

 		
 SKA CI/CD Templates Repository

 		
 Disclaimer

 		
 Templates

 		
 Template Inheritance

 		
 Pipeline Rules

 		
 How to Use

 		
 Customisation

 		
 Design

 		
 General Layout

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

