

SKA TANGO OPERATOR

This project defines a kubernetes controller for TANGO device servers.

Contents:

	Device Server deployment

	Extending Kubernetes
	The Operator pattern

	Custom Resource Definition (CRD): databaseds.tango.tango-controls.org

	Custom Resource Definition (CRD): deviceservers.tango.tango-controls.org

	TANGO Operator flow

	Metrics and grafana dashboard

	Confluence pages

	ska-tango-operator
	Installation

	How to Use

	External references and other information

Device Server deployment

The SKA telescope software is a conteinerized application that run with kubernetes (k8s [https://kubernetes.io]). A TANGO device server can be seen as a set of k8s resources, as a service, pods, etc. deployed with the help of Helm [https://helm.sh].
By using the ska-tango-util chart, a device server is composed by:

	a job for the initialization of the entry in the tangodb,

	a service,

	a statefulset with one init container per dependency,

	a role, rolebinding and a service account for waiting for the job to be finish in an init container.

The following image shows the deployment flow with the use of the ska-tango-util (in any version < 0.4.0):

[image: TANGO deployment flow]
Clearly this approach has some disadvantages in case of problems like software exception, bugs or wrong configuration. In all those cases, extra resources are required from the Kubernetes cluster - as it requires multiple PODs to be created as init-containers and jobs. It also leaves behind spent resources (i.e. job pods that have completed).
It can take a lot longer for a Device Server to startup - because of the Crash Loop Backoff behaviour that exists in the Kubernetes cluster, the greater the POD completions without success, the longer it takes to restart - an effect that can be compounded with multiple device dependencies.

Extending Kubernetes

	There are many possibilities for extending kubernetes. In specific the following list shows the current extension points:
	
	Kubectl plugins, official client libraries - Keystone

	API Server extension - ACL, edit requests - Keystone

	Custom Resources Definitions - partner with Custom Controllers

	Custom schedulers - rare

	Custom Controllers - API aggregation, pick up custom resources - KubeDB

	Network extensions - Calico, Kuryr

	Storage plugins - Cinder storage class, and operator

The Operator pattern

	The operator pattern aims to capture the key aim of a human operator who is managing a service or set of services. Human operators who look after specific applications and services have deep knowledge of how the system ought to behave, how to deploy it, and how to react if there are problems (from k8s docs - Operator pattern). In specific:
	
	Extends the Control Plane to give Custom Behaviours

	Use Custom Resource Definitions (basically extend the API)

	Use the control loop pattern (in automation, a control loop is a non-terminating loop that regulates the state of a system)

The ska-tango-operator is a kubernetes operator capable of managing TANGO resources (DeviceServer and DatabaseDS) that is to control their lifecycle within the Kubernetes’ native control/event loop.
The goal is to have a cleaner deployment (no init-containers and jobs to perform configuration and dependency-checking operations), as well as an optimised startup time for Device Servers, as the operator can directly tap into the TANGO environment and retrieve information on dependent devices and the TANGO Host itself.

Developers know Device Servers, not StatefulSet resources, as those are components with specific behaviors relevant to the platform in use.
Essentially the ska-tango-operator is an extension of the Kubernetes API with the perception of TANGO to Kubernetes mapping, automating much of the tasks a human would do to operate a TANGO resource, running on Kubernetes.

[image: The Operator pattern]

Custom Resource Definition (CRD): databaseds.tango.tango-controls.org

	The command kubectl describe crd databaseds.tango.tango-controls.org shows the list of options for this resource definition. In specific by creating this resource the following resources will be created:
	
	TANGO DB StatefulSet, Service and PersistentVolumeClaim

	Database DS StatefulSet and Service

	Database DS/TANGO DB ConfigMap

	Script ‘start-databaseds-tangodb.sh’ used as entrypoint for TANGO Database

	Script ‘start-databaseds.sh’ used as docker entrypoint for Database DS

	File ‘config.json’ Database DS json2tango configuration

The databaseds has 2 states: Building and running.

[image: tango-dds]

Custom Resource Definition (CRD): deviceservers.tango.tango-controls.org

	The command kubectl describe crd deviceservers.tango.tango-controls.org shows the list of options for this resource definition. In specific by creating this resource the following resources will be created:
	
	Device Server StatefulSet and Service

	Device Server ConfigMap

	Device Server script used to run the device (command called within start-deviceserver.sh)

The possible states for a device server are: Building, Waiting, Error, Pending, Running.

[image: tango-ds]

TANGO Operator flow

The ska-tango-base and ska-tango-util charts have been refactored in order to generate deviceserver and databaseds CRD instead of usual k8s resources depending on the parameter global.operator (true for deviceserver and databaseds generation). The charts are completely retro-compatible.

The following code how the system behaves in the above examples using the ska-tango-operator controller:

make k8s-uninstall-chart

helm repo list | grep artefact.skao.int || helm repo add k8s-helm-repository https://artefact.skao.int/repository/helm-internal

helm install to k8s-helm-repository/ska-tango-operator --create-namespace --namespace ska-tango-operator-system

make k8s-install-chart SKA_TANGO_OPERATOR=true K8S_EXTRA_PARAMS="--values my_values.yaml"
make k8s-watch SKA_TANGO_OPERATOR=true

The following code shows how to get some information from the deployment using the operator.

kubectl describe crd databaseds.tango.tango-controls.org
kubectl describe crd deviceservers.tango.tango-controls.org
kubectl get databaseds --all-namespaces
kubectl describe databaseds.tango.tango-controls.org -n ska-tango-examples
kubectl get deviceservers.tango.tango-controls.org -n ska-tango-examples
kubectl describe deviceservers.tango.tango-controls.org -n ska-tango-examples

make k8s-template-chart # will produce the file manifests.yaml

[image: tango-operator-flow]

Metrics and grafana dashboard

When the ska-tango-operator is installed and an application is deployed in the k8s cluster, a set of metrics are available from the controller. The cluster has an ingress for those metrics available at /<namespace where the operator is installed>/metrics.

Every day there is a pipeline execution for the ska-tango-examples repository. So a live example of the dashboard can be found here [https://k8s.stfc.skao.int/grafana/d/e0tiv654k/kubernetes-compute-resources-deviceserver?orgId=1&var-datasource=default&var-cluster=stfc-ska-monitor&var-namespace=ci-ska-tango-examples-0a574af7&var-DeviceServer=asynctabata-tabata&var-pod=deviceserver-asynctabata-tabata-0&from=now-24h&to=now] (please select the namespace that start with ci-ska-tango-examples-*).

Confluence pages

There is a confluence page that describes the ska-tango-operator in great details here [https://confluence.skatelescope.org/pages/viewpage.action?pageId=205802959].
A workshop has been done with this topic and the recording is available here [https://confluence.skatelescope.org/display/SE/2023-02-09+Tango+Operator+Workshop].

ska-tango-operator

This project is an extension of k8s with a Custom Resource Definition (CRD i.e. Device Server and Databaseds) and a Controller to give custom behaviours in order to have a better usage of TANGO-controls in kubernetes.

Installation

This project is structured to use k8s for development and testing so that the build environment, test environment and test results are all completely reproducible and are independent of host environment. It uses make to provide a consistent UI (run make help for targets documentation).

Install docker

Follow the instructions available at here [https://docs.docker.com/engine/install/ubuntu/].

Install minikube

You will need to install minikube or equivalent k8s installation in order to set up your test environment. You can follow the instruction at here [https://gitlab.com/ska-telescope/sdi/deploy-minikube/]:

git clone git@gitlab.com:ska-telescope/sdi/deploy-minikube.git
cd deploy-minikube
make all
eval $(minikube docker-env)

Please note that the command eval $(minikube docker-env) will point your local docker client at the docker-in-docker for minikube. Use this only for building the docker image and another shell for other work.

Install GO

Follow the instructions available at here [https://go.dev/doc/install].

How to Use

Install the operator with the following command:

$ git clone git@gitlab.com:ska-telescope/ska-tango-operator.git
$ cd ska-tango-operator
$ make k8s-install-chart

Install the example with the following command:

$ kubectl apply -f config/samples/all-in-one.yml

Check what’s happening with the following commands:

$ kubectl get deviceserver
$ kubectl get databaseds

Uninstall the examples and the operator with the following commands:

$ kubectl delete -f config/samples/all-in-one.yml
$ make k8s-uninstall-chart

Generate the charts

The charts available in this repository are generated with the following commands:

$ make helm-operator
$ make helm-crd

External references and other information

	This project has been made with the help of an operator SDK called kubebuilder [https://github.com/kubernetes-sigs/kubebuilder] written in GO.

	The databaseds is a Device server as any other and technically can be defined as device server.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/img/operator-pattern.png
Kubernetes API Operator
I

1 1
1
Greate instance 1 Create/Update the
of CRD target child resources
(Statetuiset,

ConfigMap, Service)

I

Assess child
resources
readiness, health

1
1
1
1
1
1
1 and status
'c—). 1 l
1
1
1
1

Sets/Changes

kubectl

apply/patch
Ireplace

<resource>

Creates/Updates

RECONCILE

Kubect! neats N Update
getidescribe Resource's Resource's
<resource> state 1 State

e [

_static/img/tango-dds.png
Create
DatabaseD$

Create/Update
Database DS and TANGO
DB entrypoint scripts in
a ConfigMap

13

Create/Update
TANGO DB
PersistentVolumeClaim,
Service and StatefulSet

Create/Update Database
DS Service and StatefulSet

v

Validate that all child
resources are ready and
accounted for

|
|
|
|
|
|
|
|
|
) v
|
|
|
|
|
|
|
|

State: Building

State: Running

_images/tango-flow.png
Operatar __

epl
with SKA Tango

Deploy
Tango DB

Create
configuration json to
use with Json2Tango

Create <device
server>.py Python code
including all the
necessary classes

Run dsconfig's
Json2Tango to register
and configure the
device

Wait for Database DS@

with check-
databaseds-ready

Deploy
Database
Ds

ait for configuration job to]
complete in order to have

\| [the device server correctly

registered, using the

Kubernetes API

Wait for dependent device
Iservers to become ready b
pinging them using
dsconfig’s TANGO Admin

Device
Server
READY

Run the device server as
the StatefulSet's single
container

_images/tango-operator-flow.png
Create/Update @
TANGO DB

PersistentVolumeClaim,

Service and StatefulSet

State: Building

Create
DatabaseDS

State
Running

Create/Update Database
DS Service and StatefulSet

State. Waiting .
Create/Update Device |
(<databaseds>) Wait for dependent devices Server e?gecutable‘ State
o become ready using initialization and Running
tango_admin or checking configuration scripts in
DeviceServer resources ConfigMap

T
State: Building

State: Walting.

[configure the Device Server o]

the TANGO database using Create/Update Device
json2tango if configured in Server Service and
the Operator (else, deferred to| statefulSet

the init-container)

_images/tango-dds.png
Create
DatabaseD$

Create/Update
Database DS and TANGO
DB entrypoint scripts in
a ConfigMap

13

Create/Update
TANGO DB
PersistentVolumeClaim,
Service and StatefulSet

Create/Update Database
DS Service and StatefulSet

v

Validate that all child
resources are ready and
accounted for

|
|
|
|
|
|
|
|
|
) v
|
|
|
|
|
|
|
|

State: Building

State: Running

_images/tango-ds.png
Create
DeviceServer

State: Waiting
(<databaseds>)

N

Checkif the Database DS
resource (o TANGO Host) is
reachable/ready

¥

Check i all dependent devices
are ready using tango_admin's
ping i 2 valid TANGO FQDN is

given if configured in the
Operator (else, deferred to the

init-container) \/\

If itis not, it wil consider it
another DeviceServer resource
and look for it in the Kubemetes

APl

Configure the Device Server @

lto the TANGO database using|
Json2tango if configured in
the Operator (else, deferred
to the init-container)

R S

Create/Update Device Server,
executable, initalization and
configuration scripts in a
ConfigMap

¥

Create/Update Device
Server Service and
StatefulSet

Validate that all child

resources are ready and
accounted for

State: Waiting...

State: Error
ifjson2tango cal fats

N

State: Building

N

T ----

State: Running

_static/img/tango-ds.png
Create
DeviceServer

State: Waiting
(<databaseds>)

N

Checkif the Database DS
resource (o TANGO Host) is
reachable/ready

¥

Check i all dependent devices
are ready using tango_admin's
ping i 2 valid TANGO FQDN is

given if configured in the
Operator (else, deferred to the

init-container) \/\

If itis not, it wil consider it
another DeviceServer resource
and look for it in the Kubemetes

APl

Configure the Device Server @

lto the TANGO database using|
Json2tango if configured in
the Operator (else, deferred
to the init-container)

R S

Create/Update Device Server,
executable, initalization and
configuration scripts in a
ConfigMap

¥

Create/Update Device
Server Service and
StatefulSet

Validate that all child

resources are ready and
accounted for

State: Waiting...

State: Error
ifjson2tango cal fats

N

State: Building

N

T ----

State: Running

nav.xhtml

 Table of Contents

 		
 SKA TANGO OPERATOR

 		
 Device Server deployment

 		
 Extending Kubernetes

 		
 The Operator pattern

 		
 Custom Resource Definition (CRD): databaseds.tango.tango-controls.org

 		
 Custom Resource Definition (CRD): deviceservers.tango.tango-controls.org

 		
 TANGO Operator flow

 		
 Metrics and grafana dashboard

 		
 Confluence pages

 		
 ska-tango-operator

 		
 Installation

 		
 Install docker

 		
 Install minikube

 		
 Install GO

 		
 How to Use

 		
 Generate the charts

 		
 External references and other information

_images/operator-pattern.png
Kubernetes API Operator
I

1 1
1
Greate instance 1 Create/Update the
of CRD target child resources
(Statetuiset,

ConfigMap, Service)

I

Assess child
resources
readiness, health

1
1
1
1
1
1
1 and status
'c—). 1 l
1
1
1
1

Sets/Changes

kubectl

apply/patch
Ireplace

<resource>

Creates/Updates

RECONCILE

Kubect! neats N Update
getidescribe Resource's Resource's
<resource> state 1 State

e [

_static/img/tango-flow.png
Operatar __

epl
with SKA Tango

Deploy
Tango DB

Create
configuration json to
use with Json2Tango

Create <device
server>.py Python code
including all the
necessary classes

Run dsconfig's
Json2Tango to register
and configure the
device

Wait for Database DS@

with check-
databaseds-ready

Deploy
Database
Ds

ait for configuration job to]
complete in order to have

\| [the device server correctly

registered, using the

Kubernetes API

Wait for dependent device
Iservers to become ready b
pinging them using
dsconfig’s TANGO Admin

Device
Server
READY

Run the device server as
the StatefulSet's single
container

_static/img/tango-operator-flow.png
Create/Update @
TANGO DB

PersistentVolumeClaim,

Service and StatefulSet

State: Building

Create
DatabaseDS

State
Running

Create/Update Database
DS Service and StatefulSet

State. Waiting .
Create/Update Device |
(<databaseds>) Wait for dependent devices Server e?gecutable‘ State
o become ready using initialization and Running
tango_admin or checking configuration scripts in
DeviceServer resources ConfigMap

T
State: Building

State: Walting.

[configure the Device Server o]

the TANGO database using Create/Update Device
json2tango if configured in Server Service and
the Operator (else, deferred to| statefulSet

the init-container)

