
project-name Documentation
Release 0.1.0

author

Aug 23, 2023

CONTENTS:

1 Building the Docker images 3
1.1 Building with alternatives to Docker . 4
1.2 Pushing the images to a Docker registry . 4

2 Helm Charts available on ska-tango-images repository 5
2.1 The ska-tango-base helm chart . 5
2.2 The ska-tango-util helm chart . 5

3 SKA TANGO-controls docker images on Kubernetes 11

4 Minikube 13
4.1 Helm Chart . 13
4.2 Cleaning Up . 13
4.3 Running the SKA TANGO-controls docker images on Kubernetes 14
4.4 Vault Secrets . 14
4.5 Enable vault secrets in the tango charts . 14

i

ii

project-name Documentation, Release 0.1.0

This project defines a set of Docker images and Docker compose files that are useful for TANGO control system
development.

CONTENTS: 1

project-name Documentation, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

BUILDING THE DOCKER IMAGES

The following Docker images are built by this project:

Docker image Description
pytango-
builder

Extends ska/tango-cpp, adding PyTango Python bindings and other tools for building python
libraries

pytango-
runtime

Extends pytango-builder without any tools for development.

tango-admin The TANGO tango-admin tool.
tango-cpp Core C++ TANGO libraries and applications.
tango-
databaseds

The TANGO databaseds device server.

tango-db A MariaDB image including TANGO database schema. Data is stored separately in a volume.
tango-
dependencies

A base image containing TANGO’s preferred version of ZeroMQ plus the preferred, patched
version of OmniORB.

tango-dsconfig The TANGO MAXIV tool for managing the tango-db
tango-itango itango, a Python shell for interactive TANGO sessions.
tango-java As per ska/tango-cpp, plus Java applications and bindings.
tango-jive The TANGO jive tool
tango-libtango Same as tango-cpp.
tango-panic The TANGO panic tool
tango-panic-
gui

The TANGO panic tool with xfce4 and vnc.

tango-pogo Image for running Pogo and displaying Pogo help. Pogo output can be persisted to a docker
volume or to the host machine.

tango-pytango same as pytango-runtime.
tango-rest An image containing mtango-rest, which acts as a REST proxy to a TANGO system.
tango-test The TANGO test device server.
tango-vnc An image containing xfce4 and vnc in order to enable desktop application such as jive.

To build and register the images locally, from the root of this repository execute:

cd docker
build and register TBC/tango-cpp, TBC/tango-jive, etc. locally
make build

Optionally, you can register images to an alternative Docker registry account by supplying the
CAR_OCI_REGISTRY_HOST and CAR_OCI_REGISTRY_PREFIX Makefile variables, e.g.,

build and register images as foo/tango-cpp, foo/tango-jive, etc.
make CAR_OCI_REGISTRY_PREFIX=foo build

3

project-name Documentation, Release 0.1.0

1.1 Building with alternatives to Docker

You can use a daemon-less unpriveleged alternative to Docker to build container images using the dockerfiles hosted
in this project by setting the IMAGE_BUILDER Makefile variable. This alternative image builder must be fully
compatible with docker build options. Currently, Img and Podman were tested and they work without any major
issues.

To use, e.g., Img:

build and register images as TBC/tango-cpp, TBC/tango-jive, etc.
make IMAGE_BUILDER=img build

For more information about IMG, including installation:

https://github.com/genuinetools/img

For more information about Podman:

https://github.com/containers/podman

1.2 Pushing the images to a Docker registry

Push images to the default Docker registry located at https://docker.io by using the make push target.

push the images to the Docker registry, making them publicly
available as foo/tango-cpp, foo/tango-jive, etc.
make CAR_OCI_REGISTRY_PREFIX=foo push

Images can also be pushed to a custom registry by specifying a CAR_OCI_REGISTRY_HOST Makefile argument
during the make build and make push steps, e.g.,

build and tag the images to a custom registry located at
http://test_registry:5000
make CAR_OCI_REGISTRY_PREFIX=foo CAR_OCI_REGISTRY_HOST=my_registry.org:5000 build

Now push the images to the remote custom registry
make CAR_OCI_REGISTRY_PREFIX=foo CAR_OCI_REGISTRY_HOST=my.registry.org:5000 push

If your images were built with alternatives to Docker like Img or Podman do not forget to set the IMAGE_BUILDER
variable accordingly.

4 Chapter 1. Building the Docker images

https://github.com/genuinetools/img
https://github.com/containers/podman
https://docker.io

CHAPTER

TWO

HELM CHARTS AVAILABLE ON SKA-TANGO-IMAGES REPOSITORY

There are two helm charts available on this repository: one is called ska-tango-base and the other is the
ska-tango-util. There is another helm chart, called ska-tango-images, which is used only for testing
purposes.

2.1 The ska-tango-base helm chart

The ska-tango-base helm chart is an application chart which defines the basic TANGO ecosystem in kubernetes.

In specific it defines the following k8s services:

• tangodb: it is a mysql database used to store configuration data used at startup of a device server (more
information can be found here. If the global.operator is true then this won’t be generated in favour
of a databaseds resource type. More information available here

• databaseds: it is a device server providing configuration information to all other components of the system
as well as a runtime catalog of the components/devices (more information can be found here.

• itango: it is an interactive Tango client (more information can be found here.

• vnc: it is a debian environment with x11 server and vnc/novnc installed on it.

• tangotest: it is the tango test device server (more information can be found here.

2.2 The ska-tango-util helm chart

The ska-tango-util helm chart is a library chart which helps other application chart defines TANGO device
servers.

In specific it defines the following helm named template:

• configuration (deprecated): it creates a k8s service account, a role and role binding for waiting the config-
uration job to be done and a job for the dsconfig application to apply a configuration json file set into the
values file;

• deviceserver (deprecated): it creates a k8s service and a k8s statefulset for a instance of a device server;

• multidevice-config: it creates a ConfigMap which contains the generated dsconfig json configuration file,
the boostrap script for the dsconfig application and a python script for multi class device server startup; if
the global.operator is true then this won’t be generated. More information available here;

• multidevice-job: it creates a job for the dsconfig application to apply a configuration json file set into the
values file; if the global.operator is true then this won’t be generated. More information available
here;

5

https://tango-controls.readthedocs.io/en/latest/reference/glossary.html#term-tango-database
https://gitlab.com/ska-telescope/ska-tango-operator
https://tango-controls.readthedocs.io/en/latest/reference/glossary.html#term-tango-host
https://gitlab.com/tango-controls/itango
https://gitlab.com/tango-controls/TangoTest
https://github.com/MaxIV-KitsControls/lib-maxiv-dsconfig
https://github.com/MaxIV-KitsControls/lib-maxiv-dsconfig
https://github.com/MaxIV-KitsControls/lib-maxiv-dsconfig
https://gitlab.com/ska-telescope/ska-tango-operator
https://github.com/MaxIV-KitsControls/lib-maxiv-dsconfig
https://gitlab.com/ska-telescope/ska-tango-operator

project-name Documentation, Release 0.1.0

• multidevice-sacc-role: it creates a k8s service account, a role and role binding for waiting the configura-
tion job to be done; if the global.operator is true then this won’t be generated. More information
available here;

• multidevice-svc: it creates a k8s service and a k8s statefulset for a device server tag specified in the values
file. If the global.operator is true then this won’t be generated in favour of a DeviceServer k8s type.
More information available here

• deviceserver-pvc: it optionally creates a volume for the deviceserver when it contains the dictionary vol-
ume. The subkeys are name, mountPath and storage. See example below.

• operator: it creates a k8s DeviceServer type of k8s resources.

With the introduction of the SKA TANGO Operator k8s controller the library is also able to generate DeviceServer
type of resources. This can be activate by setting the parameter global.operator.

2.2.1 Dsconfig generation

Dsconfig is an application which configure the tango database with the help of a json file. With ska-tango-util a device
derver is configurable using specifications in a values.yaml file of the chart instead of the dsconfig.json file, where all
device servers have a configuration yaml block. Below there is an example of a values file that can be used with the
ska-tango-util multi device definition:

deviceServers:
theexample:

name: "theexample-{{.Release.Name}}"
function: ska-tango-example-powersupply
domain: ska-tango-example
instances: ["test"]
polling: 1000
entrypoints:

- name: "powersupply.PowerSupply"
path: "/app/module_example/powersupply.py"
- name: "EventReceiver.EventReceiver"
path: "/app/module_example/EventReceiver.py"
- name: "Motor.Motor"
path: "/app/module_example/Motor.py"

server:
name: "theexample"
instances:
- name: "test2"

classes:
- name: "PowerSupply"
devices:
- name: "test/power_supply/2"

properties:
- name: "test"
values:
- "test2"

- name: "test"
classes:
- name: "PowerSupply"
devices:
- name: "test/power_supply/1"

properties:
- name: "test"
values:

(continues on next page)

6 Chapter 2. Helm Charts available on ska-tango-images repository

https://gitlab.com/ska-telescope/ska-tango-operator
https://gitlab.com/ska-telescope/ska-tango-operator
https://gitlab.com/ska-telescope/ska-tango-operator
https://github.com/MaxIV-KitsControls/lib-maxiv-dsconfig

project-name Documentation, Release 0.1.0

(continued from previous page)

- "test2"
- name: "EventReceiver"
devices:
- name: "test/eventreceiver/1"
- name: "Motor"
devices:
- name: "test/motor/1"

properties:
- name: "polled_attr"
values:
- "PerformanceValue"
- "{{ .Values.deviceServers.theexample.polling }}"
attribute_properties:
- attribute: "PerformanceValue"
properties:
- name: "rel_change"

values:
- "-1"
- "1"

class_properties:
- name: "PowerSupply"
properties:

- name: "aClassProperty"
values: ["67.4", "123"]
- name: "anotherClassProperty"
values: ["test", "test2"]

depends_on:
- device: sys/database/2

image:
registry: "{{.Values.tango_example.image.registry}}"
image: "{{.Values.tango_example.image.image}}"
tag: "{{.Values.tango_example.image.tag}}"
pullPolicy: "{{.Values.tango_example.image.pullPolicy}}"

volume:
name: firmware
mountPath: /firmware

Fields explained:

• deviceServers : contains a list of all device server defined

• instances : On this field the user can define which of the instances defined in the server tag are going to be
created on the deviceServer.

• entrypoints : The number of entrypoints should correspond to the defined in the server tag field.

– name : This is a mandatory field at entrypoints. The name field has to have a format like Name-
OfTheModule.NameOfTheClass.

– path : This is a optional field at entrypoints. The path field is the path of the module that has the class
of the device. This field may not be present only if the module is included in the list of directories
that the interpreter will search, one example is if the modules are installed with pip.

• server : It’s the equivalent of the dsconfig json file and define everything needed for a device server.

– intances : A list of all instances for a device server. For each instance a number of devices can be
defined together with the relative properties.

• class_properties : On this field you can list your class properties.

2.2. The ska-tango-util helm chart 7

project-name Documentation, Release 0.1.0

The device server configuration, like the above one, needs to be added to the values.yaml file. Below there is an
example of how to add it (by splitting the definitions in different files):

deviceServers:
theexample:

instances: ["test2"]
polling: 1000
file: "data/theexample.yaml"

Fields explained:

• file : This field specifies the path of the device server configuration block as shown above. Note:. This file
should be included in a data folder inside the chart.

• polling : This field is referenced in the above device server configuration block. In fact the ska-tango-util
device server definition template some of the field composing it (like the properties). In the above example
the polled_attr property of the test/motor/1 device takes its value from this field. As a consequence, this
field allows us to change the value of the polled_attr property in the parent chart.

• instances : If instances has values in the value file, this takes precedence over the data file instances field.

The use of the yaml file allows users to have a cleaner and more understandable view of the DeviceServer configura-
tions compared to a json file configuration. The helm template multidevice-config creates a ConfigMap which contains
the generated dsconfig that was loaded and converted to a json type file from the values.yaml file described above.

2.2.2 How to use the defined helm named template

A example on how to set up your k8s namespace with the helm named templates, described in the beginning of this
section, can be seen on ska-tango-example repository. This templates are called by the below template present on the
ska-tango-example repository:

1 {{ $localchart := . }}
2

3 {{- range $key, $deviceserver := .Values.deviceServers }}
4

5 {{- if hasKey $deviceserver "file"}}
6

7 {{- $filedeviceserver := $.Files.Get $deviceserver.file | fromYaml }}
8 {{- $_ := set $filedeviceserver "instances" (coalesce $localchart.Values.global.

→˓instances $deviceserver.instances $filedeviceserver.instances) }}
9 {{- $context := dict "name" $key "deviceserver" $filedeviceserver "image"

→˓$deviceserver.image "local" $localchart }}
10 {{ template "ska-tango-util.multidevice-config.tpl" $context }}
11 {{ template "ska-tango-util.multidevice-sacc-role.tpl" $context }}
12 {{ template "ska-tango-util.multidevice-job.tpl" $context }}
13 {{ template "ska-tango-util.multidevice-svc.tpl" $context }}
14 {{- $volume_context := dict "volume" $filedeviceserver.volume "local" $localchart }}
15 {{ template "ska-tango-util.deviceserver-pvc.tpl" $volume_context }}
16

17 {{- else }}
18

19 {{- $_ := set $deviceserver "instances" (coalesce $localchart.Values.global.instances
→˓$deviceserver.instances) }}

20 {{- $context := dict "name" $key "deviceserver" $deviceserver "image" $deviceserver.
→˓image "local" $localchart }}

21 {{ template "ska-tango-util.multidevice-config.tpl" $context }}
22 {{ template "ska-tango-util.multidevice-sacc-role.tpl" $context }}

(continues on next page)

8 Chapter 2. Helm Charts available on ska-tango-images repository

https://gitlab.com/ska-telescope/ska-tango-example/-/tree/master/charts/ska-tango-example/data
https://gitlab.com/ska-telescope/ska-tango-example
https://gitlab.com/ska-telescope/ska-tango-example/-/blob/master/charts/ska-tango-example/templates/deviceservers.yaml

project-name Documentation, Release 0.1.0

(continued from previous page)

23 {{ template "ska-tango-util.multidevice-job.tpl" $context }}
24 {{ template "ska-tango-util.multidevice-svc.tpl" $context }}
25 {{- $volume_context := dict "volume" $deviceserver.volume "local" $localchart }}
26 {{ template "ska-tango-util.deviceserver-pvc.tpl" $volume_context }}
27

28

29 {{- end }}
30

31 {{- end }} # deviceservers

Tango-example template description:

• Line 3 to Line 29 : This template will iterate through each field under deviceServers on the values.yaml
file.

• Line 5 to Line 15 : If the device server has a file field we will get that configuration file and use it. (Best
Practice: Add the deviceServer configuration in the data folder and then pass the path of it in the file field
of the deviceServer).

• Line 17 to Line 26 : If there is no file field it means that the configuration of this device was done inside the
value.yaml. (Note: Making the configuration of the device inside the values.yaml makes this file bigger
becoming harder to read and understand)

• Line 7 : As discussed before it is possible to have a instances field in the values.yaml file and in the data
file, it is also possible to have instances defined as a global field. It is being used a coalesced function
that takes the first not null value of the list. The priority is, first it takes the instance value from the global
variable if there is none it takes it from the values file and then from the data file.

• Line 19 : Same as line 8 but without the possibility of having the instance field on the data file.

• Line 9 and Line 20 : Context is a list of variables that will passed as arguments to the templates.

• Line 14 to Line 15: Use and set the context for persistent volume claims attached to teh deviceserver

• Line 25 to Line 26: same as 14 to 15

• Templates : There are five templates already described before. Each template will be called for each
deviceServer as they are inside the range loop (line 3).

2.2. The ska-tango-util helm chart 9

https://developer.skao.int/projects/ska-tango-images/en/latest/?badge=latest

project-name Documentation, Release 0.1.0

10 Chapter 2. Helm Charts available on ska-tango-images repository

CHAPTER

THREE

SKA TANGO-CONTROLS DOCKER IMAGES ON KUBERNETES

The following are a set of instructions of running the SKA TANGO-controls docker images made by SKA on Kuber-
netes, and has been tested on minikube v1.12.3 with k8s v1.18.3 Docker 19.03.8 on Ubuntu 18.04.

11

project-name Documentation, Release 0.1.0

12 Chapter 3. SKA TANGO-controls docker images on Kubernetes

CHAPTER

FOUR

MINIKUBE

Using Minikube enables us to create a single node stand alone Kubernetes cluster for testing purposes. If you already
have a cluster at your disposal, then you can skip forward to the section Running the SKA TANGO-controls docker
images on Kubernetes.

The generic installation instructions are available at https://kubernetes.io/docs/tasks/tools/install-minikube/. A de-
ployment of Minikube that will support the standard features required for the SKA is available at https://gitlab.com/
ska-telescope/sdi/deploy-minikube.

Once you have finished the deployment you may need to fixup your permissions:

sudo chown -R ${USER} /home/${USER}/.minikube
sudo chgrp -R ${USER} /home/${USER}/.minikube
sudo chown -R ${USER} /home/${USER}/.kube
sudo chgrp -R ${USER} /home/${USER}/.kube

Once completed, minikube will also update your kubectl settings to include the context current-context:
minikube in ~/.kube/config. Test that connectivity works with something like:

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-86c58d9df4-5ztg8 1/1 Running 0 3m24s
...

4.1 Helm Chart

The Helm Chart based install of the SKA TANGO-controls docker images relies on Helm (surprise!). If your system
does not have a running version of Helm the easiest way to install one is using the install script:

curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash

4.2 Cleaning Up

Note on cleaning up:

minikube stop # stop minikube - this can be restarted with minikube start
minikube delete # destroy minikube - totally gone!
rm -rf ~/.kube # local minikube configuration cache
remove all other minikube related installation files
sudo rm -rf /var/lib/kubeadm.yaml /data/minikube /var/lib/minikube /var/lib/kubelet /
→˓etc/kubernetes (continues on next page)

13

https://kubernetes.io/docs/getting-started-guides/minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://gitlab.com/ska-telescope/sdi/deploy-minikube
https://gitlab.com/ska-telescope/sdi/deploy-minikube
https://docs.helm.sh/using_helm/#installing-helm

project-name Documentation, Release 0.1.0

(continued from previous page)

4.3 Running the SKA TANGO-controls docker images on Kubernetes

The basic configuration for each component of the SKA TANGO-controls docker images is held in the values.
yaml files.

We launch the SKA TANGO-controls docker images with:

$ make k8s-install-chart

To clean up the Helm Chart release:

$make k8s-uninstall-chart

4.4 Vault Secrets

When deploying to a remote cluster we may want to use the vault to fetch secrets.

The tango-base charts are configured to allow the use of vault in the tangodb and databaseds database containers.

When the vault is enable in your chart, vault annotations are added to the chart templates allowing the secrets to be
injected in the container

This secret file, in the examples, are formatted as a key/value pairs allowing us the ability to source the file and
consequently add the variables as environment variables. This is useful for database containers.

But be aware that sourcing the secret file, depending on your container specification, may disrupt its normal startup
flow.

After sourcing the file you need to run the necessary scrips / commands so that your application starts correctly. This
changes from application to application.

4.5 Enable vault secrets in the tango charts

To use vault configure in the values.yml (this is the tangodb example):

tangodb:

...

vault:
useVault: true
secretPath: stfc
role: kube-role

parameter|description :—–:|:—–: useVault| turn it on/off secretPath| starting path for the secret in the server role|
vault role to use

If you are using minikube set the useVault parameter to false, remove it or remove the vault section entirely.

14 Chapter 4. Minikube

	Building the Docker images
	Building with alternatives to Docker
	Pushing the images to a Docker registry

	Helm Charts available on ska-tango-images repository
	The ska-tango-base helm chart
	The ska-tango-util helm chart

	SKA TANGO-controls docker images on Kubernetes
	Minikube
	Helm Chart
	Cleaning Up
	Running the SKA TANGO-controls docker images on Kubernetes
	Vault Secrets
	Enable vault secrets in the tango charts

