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This repository collects scripts used for various SKA-Low simulations.
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2 HOME



CHAPTER

ONE

LOCAL DEVELOPMENT

1.1 Local development

1.1.1 Download

To clone the repository, use:

git clone https://gitlab.com/ska-telescope/ska-low-simulations.git

Or browse the files at https://gitlab.com/ska-telescope/ska-low-simulations

1.1.2 Install requirements

Local virtual environment

Note: the following information is to set up an environment that works with the RFI simulations only. Other scripts
may need more packages to be added to requirements.txt.

Differences based on Operating System

Linux: you may create a virtual environment with conda, virtualenvwrapper, or other python-based virtual environment
tool. Installing the requirements via pip should work in all.

MacOS: you will need to create the environemnt with conda. That is because python-casacore does not currently
behave well, when trying to install it via pip into a standard python environment.

Create a virtual environment

virtualenvwrapper

To install and set up virtualenvwrapper follow this guide.

Create an environment: replace my-environment with the name you prefer, and replace python3.7 with the path to your
python3 installation. If the PYTHONPATH used by virtualenvwrapper is the python3 version you want to use, then
you can omit the -p option.

mkvirtualenv -p python3.7 my-environment

Start environment:

3

https://gitlab.com/ska-telescope/ska-low-simulations
https://virtualenvwrapper.readthedocs.io/en/latest/install.html


developer.skatelescope.org Documentation, Release 0.1.0-beta

workon my-environemnt

Deactivate environment:

deactivate

conda

To install and set up conda follow the conda guide.

Create an environemnt (replace my-environment with the name you prefer):

conda create --name my-environment python=3.7

Start environment:

conda activate my-environemnt

Deactivate environment:

conda deactivate

Install requirements

Linux

Once you have activated your environment and navigated into the ska-sim-low directory (i.e. the root directory of the
git repository), run the following:

pip install -r requirements.txt --pre

--pre will allow you to download the latest beta versions of dependencies. This is necessary to get the latest RASCIL
version from PyPi.

Depending on what python version you used to create the environment, the pip within that will be tied to that python
version. This command should install all of the necessary requirements.

In addition, you will have to obtain RASCIL data. RASCIL will be installed via pip as part of the above command,
however the additional setup described at RASCIL Installation is required. If you encounter with a Tuple index out
of range error while running RASCIL-dependent code, you may also need to go through the Git LFS steps on the
same page under “Installation via git clone”.

You will also need OSKAR set up. On Linux, you may use the Singularity image.

4 Chapter 1. Local development
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MacOS

On MacOS, python-casacore, a dependency of RASCIL, does not behave well with pip, so you will need conda
to install it.

Install python-casacore with conda:

conda install -c conda-forge python-casacore

Install the rest of the requirements using pip:

pip install -r requirements.txt --pre

--pre will allow you to download the latest beta versions of dependencies. This is necessary to get the latest RASCIL
version from PyPi.

Depending on what python version you used to create the environment, the pip within that will be tied to that python
version. This command should install all of the necessary requirements.

In addition, you will have to obtain RASCIL data. RASCIL will be installed via pip as part of the above command,
however the additional setup described at RASCIL Installation is required. If you encounter with a Tuple index out
of range error while running RASCIL-dependent code, you may also need to go through the Git LFS steps on the
same page under “Installation via git clone”.

You will also need OSKAR set up, which you can do via installing the binary version.

Docker container as Python interpreter

Note: the following instructions are still under development, as not all of the RFI code has been tested with this setup.

If you don not want to set up a complicated environment locally with all sorts of data also added to your machine, then
you can create a Docker image, which then you can use as your python interpreter both from the command line and
from PyCharm or Visual Studio Code.

Create a docker image

Create a Dockerfile, called docker_python_env, with the following information in it (do not add the file to git):

FROM nexus.engageska-portugal.pt/rascil-docker/rascil-base

WORKDIR /rascil/sim-low-rfi/

ADD requirements.txt requirements-test.txt .
ADD docs/requirements-docs.txt .

RUN pip install -r requirements.txt -r requirements-test.txt -r requirements-docs.txt

The starting image is rascil-base. This does not contain any RASCIL data. If you need RASCIL data as part of the
image, you’ll need to use rascil-full. Here you can read more about RASCIL container images.

Build the docker image (be in the ska-sim-low directory, where your personal dockerfile should also be:

docker build -t rfi-environment -f docker_python_env .

1.1. Local development 5
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Docker as Python interpreter in IDE

Use this image as your Python interpreter in Pycharm Professional or Visual Studio Code. To set the environment up,
please follow the links.

Develop locally and run code in Docker

You can also run your code, tests, bash scripts directly from the Docker container, while still accessing and changing
the files on your machine with your favourite IDE or text editor.

Start the container:

docker run -it -v ${PWD}:/rascil/sim-low-rfi --rm rfi-environment:latest

This will take you inside the container. --rm will stop the container from running once you exit it. ${PWD}:/
rascil/sim-low-rfi will attach the directory where you start the container from, into a directory called /rascil/
sim-low-rfi that is within the container. If you change something in this directory outside the container, the same
changes will appear within the container. Make sure you start the container from the ska-sim-low directory, that way
you can carry on changing those files and the changes will be present in the container as well. Now you can run, e.g.,
test within your container where you have a fully functioning python environment, while still developing on your local
machine.

6 Chapter 1. Local development
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CHAPTER

TWO

DIRECTION-DEPENDENT EFFECTS

Many of the simulations of direction-dependent effects on the sky make use of the OSKAR simulator. Scripts for these
simulations are written specifically for each investigation.

A “cookbook” is provided here to help describe the examples that use OSKAR, and to provide a starting point for
writing new scripts.

2.1 OSKAR cookbook

The sections below are intended to be read in order.

2.1.1 Basic concepts

OSKAR provides a toolbox of Python utilities for running simulations, and for making dirty or residual images to
analyse the results. Since the potential parameter space for all possible simulations is very large, no single script could
sensibly cater for them all - so in order to run a set of simulations for your own investigation, you will probably find
it useful to write your own script. Don’t panic though: if you’re familiar with basic Python concepts, this is not hard.
Depending on the simulations you want to run and the steps needed to analyse and present the results, the script to drive
the simulations could be very simple.

This cookbook outlines some of the key concepts and provides some examples to show what is possible, which could
be used as building blocks for your own scripts.

As shown in the sketch below, to produce simulated visibilities, OSKAR needs as inputs a sky model, a telescope
model, and a few parameters to describe the observation.

Any simulation script will usually need to iterate over a number of simulated observations, changing parts of the sky
model, the telescope model and/or the parameters in a systematic way for each run. Ways to set up the sky model and
the telescope model are described on later pages, but the most commonly used settings parameters are outlined below.

Commonly used settings

The settings parameters used by OSKAR are generated from a Python dictionary of key-value pairs.

The following parameters will almost always need to be set appropriately when running any interferometer simulation
with OSKAR. The values given below are examples only!

params = {
'simulator': {

'use_gpus': True # or False
},

(continues on next page)
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Fig. 1: Overview of OSKAR inputs and outputs

(continued from previous page)

'observation': {
'num_channels': 3, # Simulate 3 frequency channels
'start_frequency_hz': 100e6, # First channel at 100 MHz
'frequency_inc_hz': 20e6, # Channel separation of 20 MHz
'phase_centre_ra_deg': 20,
'phase_centre_dec_deg': -30,
'num_time_steps': 24, # Simulate 24 correlator dumps
'start_time_utc': '2000-01-01 12:00:00.000',
'length': '12:00:00.000' # 12 hours, or length in seconds

},
'telescope': {

'input_directory': '/absolute/or/relative/path/to/a/telescope_model_folder.tm/'
},
'interferometer': {

'channel_bandwidth_hz': 10e3,
'time_average_sec': 1.0,
'oskar_vis_filename': 'example.vis',
'ms_filename': 'example.ms'

}
}

The dictionary keys may be nested, as above, or flat if it is more convenient. The following is entirely equivalent to the
above:

params = {
'simulator/use_gpus': True, # or False

(continues on next page)
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(continued from previous page)

'observation/num_channels': 3, # Simulate 3 frequency channels
'observation/start_frequency_hz': 100e6, # First channel at 100 MHz
'observation/frequency_inc_hz': 20e6, # Channel separation of 20 MHz
'observation/phase_centre_ra_deg': 20,
'observation/phase_centre_dec_deg': -30,
'observation/num_time_steps': 24, # Simulate 24 correlator dumps
'observation/start_time_utc': '2000-01-01 12:00:00.000',
'observation/length': '12:00:00.000', # 12 hours, or length in seconds
'telescope/input_directory': '/absolute/or/relative/path/to/a/telescope_model_folder.

→˓tm/',
'interferometer/channel_bandwidth_hz': 10e3,
'interferometer/time_average_sec': 1.0,
'interferometer/oskar_vis_filename': 'example.vis',
'interferometer/ms_filename': 'example.ms'

}

Using these example parameters, simulated visibility data will be written to a CASA Measurement Set specified by the
interferometer/ms_filename settings key (in this case example.ms) and also a binary visibility data file specified
by the interferometer/oskar_vis_filename key (here, example.vis).

Most of the rest of the parameters specify the time and frequency coverage of the observation, as well as the direction
of the phase centre.

The hardest parameter to set is usually the start time. To help with this, a utility function called get_start_time is
provided in the file utils.py, which calculates an optimal start time using the target Right Ascension, the observation
length, and the longitude of the SKA-Low telescope. The observation will then be symmetric about the meridian.

The full list of settings parameters is shown in the OSKAR GUI for the oskar_sim_interferometer application,
and also in the settings documentation.

Creating a settings tree and interferometer simulator

After defining parameters in a standard Python dictionary as above, an OSKAR SettingsTree should be created from
it, and this can be used to instantiate other classes to run a simulation.

To set up an oskar.Interferometer simulator in Python, use the parameters for the oskar_sim_interferometer
application, and then set them from the Python dictionary as follows:

settings = oskar.SettingsTree('oskar_sim_interferometer')
settings.from_dict(params) # using the Python dictionary above.

This settings object can then be passed as a parameter to the constructor:

sim = oskar.Interferometer(settings=settings)

2.1. OSKAR cookbook 9
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Setting the input data models

A sky model and telescope model can be defined either using the settings parameters, or set programmatically from
Python - the latter option being useful, for example, if changing a model within a loop. The methods oskar.
Interferometer.set_sky_model() and oskar.Interferometer.set_telescope_model() can be used for
this. See the following pages for more details.

2.1.2 Setting up a sky model

Sky models used by OSKAR exist completely independently of any other simulation parameters. The sky model can
be thought of as simply a table of source data, where each row of the table contains parameters for a single source. As
a bare minimum (but often sufficient for many simulations), each source must specify a Right Ascension, Declination,
and Stokes I flux as the first three columns. Source coodinates must be specified in decimal degrees, and source
fluxes in Jy.

The class oskar.Sky is used to encapsulate data for a sky model. Useful class methods (which create and return a
new sky model) include:

• from_array(array, precision=’double’)

– to convert a numpy array to a sky model.

• generate_grid(ra0_deg, dec0_deg, side_length, fov_deg, mean_flux_jy=1.0, std_flux_jy=0.0, seed=1,
precision=’double’)

– to generate a grid of sources around a point.

• load(filename, precision=’double’)

– to load a sky model from a text file.

Useful methods on the class include:

• append(from_another)

– to append another sky model to this one.

• create_copy()

– to create and return a copy of a sky model.

• filter_by_flux(min_flux_jy, max_flux_jy)

– to remove sources from the sky model based on their Stokes I flux. (Sources with fluxes outside the
specified range will be removed.)

• filter_by_radius(inner_radius_deg, outer_radius_deg, ref_ra_deg, ref_dec_deg)

– to remove sources from the sky model based on their angular distance from a reference point. (Sources
with distances outside the specified range will be removed.)

• save(filename)

– to save the sky model to a text file.

• to_array()

– to convert the sky model to a numpy array.

10 Chapter 2. Direction-dependent effects



developer.skatelescope.org Documentation, Release 0.1.0-beta

Example: Using the GLEAM catalogue

The GLEAM Extragalactic Catalogue can be downloaded as a FITS binary table from the VizieR service. To use data
from a FITS binary table as a sky model, pull the data columns out into a new array using astropy and then create an
OSKAR sky model from the array, as follows:

from astropy.io import fits
import numpy
import oskar

# Get the first HDU (a binary table) in the specified FITS file.
data = fits.getdata('GLEAM_EGC.fits', 1)

# Create a 3-column numpy array (RA, Dec, Stokes I).
sky_array = numpy.column_stack(

(data['RAJ2000'], data['DEJ2000'], data['peak_flux_wide']))

# Create the sky model from the 3-column numpy array above.
sky = oskar.Sky.from_array(sky_array)

# Print the number of sources in the sky model.
print(sky.num_sources)
>>> 307455

Example: Filtering a sky model

It may be necessary to filter a sky model to remove sources inside or outside a certain radius from a specific point (such
as the phase centre) as part of a simulation script.

For example, to keep sources only within 20 degrees of the point at (RA, Dec) = (0, 80) degrees, use:

ra0 = 0
dec0 = 80
sky.filter_by_radius(0, 20, ra0, dec0)

Similarly, to keep sources only outside a radius of 20 degrees from the same point, use instead:

sky.filter_by_radius(20, 180, ra0, dec0)

2.1.3 Setting up a telescope model

An OSKAR telescope model encapuslates all static (time-invariant) data needed to describe a telescope configuation.

Physically, a telescope model consists of a directory hierarchy which holds the data for each station in the telescope.
Signals from stations at the root-level of the telescope model are cross-correlated, while elements and sub-stations (in
sub-directories) are beam-formed first to generate each station beam.

It is often sufficient to set up the telescope model at the same time as the other settings parameters simply by specifying
the input directory (and any other options), but it can sometimes be necessary to set it explicitly.

2.1. OSKAR cookbook 11
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Example: Overriding element data

For example, to override the some values in the model after it has been loaded:

params = {
# Set up all required simulation parameters here...
...
'telescope': {

'input_directory': 'telescope.tm'
}

}
settings = oskar.SettingsTree('oskar_sim_interferometer')
settings.from_dict(params)

# Create the telescope model from the settings parameters.
tel = oskar.Telescope(settings=settings)

# Override element gains.
tel.override_element_gains(mean=1, std=0.03, seed=1)

# Override element cable length errors.
tel.override_element_cable_length_errors(std=0.015)

The telescope model can then be set programmatically using oskar.Interferometer.
set_telescope_model(tel).

2.1.4 Defining a parameter space and running simulations

An investigation may require a large number of simulations to be carried out in order to explore a parameter space,
which typically means that a set of nested loops must be written in order to run all the simulations.

In many cases, only the simulation parameters in the settings tree need to be changed to run a new simulation, but
sometimes the sky model and/or telescope model also needs to be changed within a loop. Defining the parameters that
need to vary is the first thing to do when writing a new simulation script.

Example: A four-dimensional parameter space

A simple example script which iterates over a 4-dimensional parameter space is shown below. In this case, the obser-
vation length (3 values: short, medium, long), the target field (3 values: EoR0, EoR1, EoR2), the ionospheric phase
screen (2 values: on, off) and the sky model (2 values: GLEAM and A-team only) were all varied for a total of 36
simulations, and a CASA Measurement Set was written for each case.

Note how nested Python dictionaries are used to define groups of parameters that need to change on each iteration, and
the update() method is used to merge one dictionary into another. Each dimension is iterated using the general form:

# Iterate over a dimension.
for key_name, params_to_update in dictionary.items():

# Update the current settings dictionary.
current_settings.update(params_to_update)

# Iterate over the next dimension...

12 Chapter 2. Direction-dependent effects
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These are all standard Python constructs.

After all the parameters have been set up in the settings tree, an instance of oskar.Interferometer is created using
it. Finally, calling oskar.Interferometer.run() will run each simulation.

1 #!/usr/bin/env python3
2 """
3 Run simulations for SKA1-LOW direction-dependent effects.
4 https://confluence.skatelescope.org/display/SE/Simulations+with+Direction-

→˓Dependent+Effects
5 https://jira.skatelescope.org/browse/SIM-489
6 """
7

8 import copy
9 import os.path

10

11 from astropy.io import fits
12 import numpy
13 import oskar
14

15 from .utils import get_start_time
16

17

18 def bright_sources():
19 """
20 Returns a list of bright A-team sources.
21 Does not include the Galactic Centre!
22 """
23 # For A: data from the Molonglo Southern 4 Jy sample (VizieR).
24 # Others from GLEAM reference paper, Hurley-Walker et al. (2017), Table 2.
25 return numpy.array(
26 (
27 [
28 50.67375,
29 -37.20833,
30 528,
31 0,
32 0,
33 0,
34 178e6,
35 -0.51,
36 0,
37 0,
38 0,
39 0,
40 ], # For
41 [
42 201.36667,
43 -43.01917,
44 1370,
45 0,
46 0,
47 0,
48 200e6,

(continues on next page)
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(continued from previous page)

49 -0.50,
50 0,
51 0,
52 0,
53 0,
54 ], # Cen
55 [
56 139.52500,
57 -12.09556,
58 280,
59 0,
60 0,
61 0,
62 200e6,
63 -0.96,
64 0,
65 0,
66 0,
67 0,
68 ], # Hyd
69 [
70 79.95833,
71 -45.77889,
72 390,
73 0,
74 0,
75 0,
76 200e6,
77 -0.99,
78 0,
79 0,
80 0,
81 0,
82 ], # Pic
83 [
84 252.78333,
85 4.99250,
86 377,
87 0,
88 0,
89 0,
90 200e6,
91 -1.07,
92 0,
93 0,
94 0,
95 0,
96 ], # Her
97 [
98 187.70417,
99 12.39111,

100 861,

(continues on next page)
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(continued from previous page)

101 0,
102 0,
103 0,
104 200e6,
105 -0.86,
106 0,
107 0,
108 0,
109 0,
110 ], # Vir
111 [
112 83.63333,
113 22.01444,
114 1340,
115 0,
116 0,
117 0,
118 200e6,
119 -0.22,
120 0,
121 0,
122 0,
123 0,
124 ], # Tau
125 [
126 299.86667,
127 40.73389,
128 7920,
129 0,
130 0,
131 0,
132 200e6,
133 -0.78,
134 0,
135 0,
136 0,
137 0,
138 ], # Cyg
139 [
140 350.86667,
141 58.81167,
142 11900,
143 0,
144 0,
145 0,
146 200e6,
147 -0.41,
148 0,
149 0,
150 0,
151 0,
152 ], # Cas

(continues on next page)
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(continued from previous page)

153 )
154 )
155

156

157 def main():
158 """Main function."""
159 # Load GLEAM catalogue data as a sky model.
160 sky_dir = "./"
161 gleam = fits.getdata(sky_dir + "GLEAM_EGC.fits", 1)
162 gleam_sky_array = numpy.column_stack(
163 (gleam["RAJ2000"], gleam["DEJ2000"], gleam["peak_flux_wide"])
164 )
165

166 # Define common base settings.
167 tel_dir = "./"
168 tel_model = "SKA1-LOW_SKO-0000422_Rev3_38m_SKALA4_spot_frequencies.tm"
169 common_settings = {
170 "simulator/max_sources_per_chunk": 65536,
171 "simulator/write_status_to_log_file": True,
172 "observation/start_frequency_hz": 125e6, # First channel at 125 MHz.
173 "observation/frequency_inc_hz": 5e6, # Channels spaced every 5 MHz.
174 "observation/num_channels": 11,
175 "telescope/input_directory": tel_dir + tel_model,
176 "interferometer/channel_bandwidth_hz": 100e3, # 100 kHz-wide channels.
177 "interferometer/time_average_sec": 1.0,
178 "interferometer/max_time_samples_per_block": 4,
179 }
180

181 # Define observations.
182 observations = {
183 "short": {
184 "observation/length": 5 * 60,
185 "observation/num_time_steps": 300,
186 "telescope/external_tec_screen/input_fits_file": "screen_short_300_1.0.fits",
187 },
188 "medium": {
189 "observation/length": 30 * 60,
190 "observation/num_time_steps": 300,
191 "telescope/external_tec_screen/input_fits_file": "screen_medium_300_6.0.fits

→˓",
192 },
193 "long": {
194 "observation/length": 4 * 60 * 60,
195 "observation/num_time_steps": 240,
196 "telescope/external_tec_screen/input_fits_file": "screen_long_240_60.0.fits",
197 },
198 }
199

200 # Define fields.
201 fields = {
202 "EoR0": {
203 "observation/phase_centre_ra_deg": 0.0,

(continues on next page)
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(continued from previous page)

204 "observation/phase_centre_dec_deg": -27.0,
205 },
206 "EoR1": {
207 "observation/phase_centre_ra_deg": 60.0,
208 "observation/phase_centre_dec_deg": -30.0,
209 },
210 "EoR2": {
211 "observation/phase_centre_ra_deg": 170.0,
212 "observation/phase_centre_dec_deg": -10.0,
213 },
214 }
215

216 # Define ionosphere settings.
217 ionosphere = {
218 "ionosphere_on": {"telescope/ionosphere_screen_type": "External"},
219 "ionosphere_off": {"telescope/ionosphere_screen_type": "None"},
220 }
221

222 # Define sky model components.
223 sky_models = {
224 "A-team": oskar.Sky.from_array(bright_sources()),
225 "GLEAM": oskar.Sky.from_array(gleam_sky_array),
226 }
227

228 # Loop over observations.
229 for obs_name, obs_params in observations.items():
230 # Copy the base settings dictionary.
231 current_settings = copy.deepcopy(common_settings)
232

233 # Update current settings with observation parameters.
234 current_settings.update(obs_params)
235

236 # Loop over fields.
237 for field_name, field_params in fields.items():
238 # Update current settings with field parameters.
239 current_settings.update(field_params)
240

241 # Update current settings with start time.
242 ra0_deg = current_settings["observation/phase_centre_ra_deg"]
243 length_sec = current_settings["observation/length"]
244 start_time = get_start_time(ra0_deg, length_sec)
245 current_settings["observation/start_time_utc"] = start_time
246

247 # Loop over ionospheric screen on/off.
248 for iono_name, iono_params in ionosphere.items():
249 # Update current settings with ionosphere parameters.
250 current_settings.update(iono_params)
251

252 # Loop over sky model components.
253 for sky_name, sky_model in sky_models.items():
254 # Update output MS filename based on current parameters.
255 ms_name = "SKA_LOW_SIM"

(continues on next page)
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(continued from previous page)

256 ms_name += "_" + obs_name
257 ms_name += "_" + field_name
258 ms_name += "_" + iono_name
259 ms_name += "_" + sky_name
260 ms_name += ".MS"
261

262 # Check if the MS already exists (if so, skip).
263 if os.path.isdir(ms_name):
264 continue
265

266 # Create the settings tree.
267 settings = oskar.SettingsTree("oskar_sim_interferometer")
268 settings.from_dict(current_settings)
269 settings["interferometer/ms_filename"] = ms_name
270

271 # Set up the simulator and run it.
272 sim = oskar.Interferometer(settings=settings)
273 sim.set_sky_model(sky_model)
274 sim.run()
275

276

277 if __name__ == "__main__":
278 main()

Example: An irregular frequency axis

Frequency channels which are regularly spaced can be run in one go (and written to a single Measurement Set if
required) by specifying multiple channels in the settings. However, when running simulations at spot frequencies
across a band, these will need to be run separately by explicitly looping over each one. All that is required is to define
a list of frequencies and then loop over them, for example:

axis_freq_MHz = [50, 70, 110, 137, 160, 230, 320]
for freq_MHz in axis_freq_MHz:

settings['observation/start_frequency_hz'] = freq_MHz * 1e6
...

2.1.5 Imaging visibility data sets

Simulated visibilities can be saved to a CASA Measurement Set, so any imager capable of working with Measurement
Sets can be used to image them.

For convenience, OSKAR includes an imager which can be used if all that is required is a dirty (or residual) image,
and it also provides the option to make images directly from data in numpy arrays. This can often be faster than writing
visibilities out to a Measurement Set and loading them back again in order to make an image using another program.

An oskar.Imager instance can be created in Python using a settings tree for the oskar_imager application. For
example:

params = {
'image/fov_deg': 5.0,
'image/size': 6144,

(continues on next page)
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'image/algorithm': 'W-projection', # default is FFT (2D only)
# The following two options are recommended for large images
# (particularly when using W-projection),
# as long as you have enough GPU RAM to hold the complex visibility
# grid as well as the convolution kernels.
'image/fft/use_gpu': True,
'image/fft/grid_on_gpu': True,
'image/input_vis_data': 'example.vis', # or 'example.ms'
'image/root_path': 'example_image' # Optional: see below

}
settings = oskar.SettingsTree('oskar_imager')
settings.from_dict(params)
imager = oskar.Imager(settings=settings)

This will generate an image using the visibility data in the file example.vis (or example.ms if a Measurement Set
is specified instead), and will write a FITS image in Stokes I called example_image_I.fits.

The image will be centred on the phase centre used in the observation by default, but it can be re-centred on a different
direction by adding the parameters:

params = {
... (other parameters here)
'image/direction': 'RA, Dec.',
'image/direction/ra_deg': 12.34, # Insert the required coordinates.
'image/direction/dec_deg': 56.78

}

The full list of settings parameters is shown in the OSKAR GUI for the oskar_imager application, and also in the
settings documentation.

After setting it up, call oskar.Imager.run() to make the image. If required, the image(s) can be returned directly
to Python as a numpy array instead of (or as well as) writing a FITS file. Use return_images=1 as an argument
to oskar.Imager.run() and assign the return value to a variable. This will be a dictionary of arrays holding the
image(s), which can be accessed using the ‘images’ dictionary key as follows:

output = imager.run(return_images=1)
image = output['images'][0] # Stokes I image.

Making dirty or residual images automatically

Many simulation runs need to make either dirty images, or images of residual visibilities. The residuals are generated
by subtracting a reference (or model) visibility data set first.

For convenience, the ResidualImageSimulator class, described below, can be used to make either dirty or residual
images at the same time as running a simulation. It combines the functionality of oskar.Interferometer and
oskar.Imager, so that residual visibilities can be generated as needed and processed on-the-fly as the simulation
progresses, without needing to write out visibilities and load them back again to make each image. If generating
residuals, only the reference visibilities need to be saved, and multiple subsequent runs can use the same reference data
set.

This simulator is configured in the same way as oskar.Interferometer, and can optionally be passed an instance of
an imager, and a filename containing the reference visibility data. Use it in place of oskar.Interferometer if you
need to make an image of a simulated data set.
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Similar to oskar.Imager, any images created using this simulator will be returned directly as numpy arrays from the
run() method:

output = sim.run()
image = output['images'][0] # Stokes I image.

See the notes and example in the class documentation (included below) for usage instructions.

class scripts.ResidualImageSimulator(*args: Any, **kwargs: Any)
Interferometer simulator which generates both reference and residual visibilities, optionally imaging them.

This class inherits oskar.Interferometer, so it requires the same settings parameters. Each visibility block
can be imaged if required in the overridden process_block() method.

To generate (and image) residual visibilities, two simulations must be run using separate instances of this class:

1. The first run generates the reference visibility data set, which must be saved to an OSKAR visibility data
file.

2. The reference visibilities are then subtracted from the visibilities generated in the second run.

Dirty/residual images of the visibilities can be returned for either run by specifying an imager to use when
constructing the simulator.

The following code shows a minimal but complete example of how this class could be used. Note that there are
two separate simulators created.

1 import oskar
2

3 # Create a 9-by-9 unit-amplitude point-source sky model
4 # at the phase centre.
5 # First, define the phase centre coordinates.
6 ra0_deg = 0
7 dec0_deg = -30
8 grid_width_deg = 4.0 # Width of the source grid in degrees.
9 sky = oskar.Sky.generate_grid(ra0_deg, dec0_deg, 9, grid_width_deg)

10

11 # Create and set up an imager to make the residual images.
12 params_img = {
13 'image/fov_deg': grid_width_deg + 0.5,
14 'image/size': 6144,
15 'image/fft/use_gpu': True
16 }
17 settings_img = oskar.SettingsTree('oskar_imager')
18 settings_img.from_dict(params_img)
19 imager = oskar.Imager(settings=settings_img)
20

21 # Define base parameters for a simulated observation
22 # using oskar.Interferometer.
23 obs_length_sec = 4 * 3600.0 # 4 hours, in seconds.
24 base_params_sim = {
25 'observation/start_frequency_hz': 110e6, # One channel at 110 MHz
26 'observation/phase_centre_ra_deg': ra0_deg,
27 'observation/phase_centre_dec_deg': dec0_deg,
28 'observation/num_time_steps': 24, # Simulate 24 correlator dumps
29 'observation/start_time_utc': get_start_time(ra0_deg, obs_length_sec),
30 'observation/length': obs_length_sec,

(continues on next page)
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31 'interferometer/channel_bandwidth_hz': 10e3,
32 'interferometer/time_average_sec': 1.0,
33 # Ignore w-components only if the sky model allows for it,
34 # with all sources well within the imaged field of view!
35 # (W-smearing will be disabled for all sources.)
36 'interferometer/ignore_w_components': True
37 }
38 settings_sim = oskar.SettingsTree('oskar_sim_interferometer')
39 settings_sim.from_dict(base_params_sim)
40

41 # Set the parameters for the reference simulation, including a
42 # reference telescope model, and the output visibility file name.
43 settings_sim['telescope/input_directory'] = '/path/to/reference_telescope_model_

→˓folder.tm'
44 settings_sim['interferometer/oskar_vis_filename'] = 'reference_data.vis'
45

46 # Run the reference simulation.
47 # No image is made at this point, but visibilities are saved to a file.
48 sim = ResidualImageSimulator(settings=settings_sim)
49 sim.set_sky_model(sky)
50 sim.run()
51

52 # Set the parameters for the comparison simulation, including a new
53 # telescope model. We don't need to save the residual visibilities,
54 # so the output file name is blank.
55 settings_sim['telescope/input_directory'] = '/path/to/comparison_telescope_model_

→˓folder.tm'
56 settings_sim['interferometer/oskar_vis_filename'] = ''
57

58 # Run the comparison simulation.
59 # Note that the pre-configured imager and the filename of the
60 # reference visibility data are both passed in the constructor.
61 sim = ResidualImageSimulator(
62 imager=imager, settings=settings_sim, ref_vis='reference_data.vis')
63 sim.set_sky_model(sky)
64

65 # The residual image(s) is (are) returned by the run() method.
66 output = sim.run()
67 image = output['images'][0] # Stokes I residual image

__init__(imager=None, settings=None, ref_vis=None)
Creates the simulator, storing a handle to the imager.

Parameters

• imager (Optional[oskar.Imager]) – Imager to use.

• settings (Optional[oskar.SettingsTree]) – Optional settings to use to set up the
simulator.

• ref_vis (Optional[str]) – Pathname of reference visibility file.

finalise()

Called automatically by the base class at the end of run().
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process_block(block, block_index)
Processes the visibility block.

Residual visibilities are generated if appropriate by subtracting the corresponding reference visibilities. The
(modified) visibility block is also sent to the imager if one was set, and written to any open visibility data
files defined in the settings.

Parameters

• block (oskar.VisBlock) – A handle to the block to be processed.

• block_index (int) – The index of the visibility block.

run()

Runs the interferometer simulator and imager, if set.

Any images will be returned in an array accessed by the ‘images’ dictionary key, for example:

output = sim.run()
image = output['images'][0] # Stokes I image.

2.1.6 Making an animation

Sometimes it can be useful to make an animation to check whether a set of simulations worked, or to help give a demo.
This section shows an example of how to use matplotlib and the OSKAR imager from within a loop to make each
frame of an animation by iterating over time samples in a Measurement Set. The script below could either be used
as-is, or adapted to a more complex use case. Each frame is generated by reading slices of visibility data in Plotter.
_animate_func, while the remainder of the script sets up the environment using calls to functions in matplotlib.

The script has the following command-line arguments:

usage: animate_ms.py [-h] [--fov_deg FOV_DEG] [--size SIZE] [--fps FPS]
[--out OUT] [--title TITLE]
MS [MS ...]

Make an animation from one or more Measurement Sets

positional arguments:
MS Measurement Set path(s)

optional arguments:
-h, --help show this help message and exit
--fov_deg FOV_DEG Field of view to image, in degrees (default: 0.5)
--size SIZE Image side length, in pixels (default: 256)
--fps FPS Frames per second in output (default: 10)
--out OUT Output filename (default: out.mp4)
--title TITLE Overall figure title (default: )

Download animate_ms.py:

1 #!/usr/bin/env python3
2 """
3 Generate an animation by stepping through visibility time samples.
4 """
5 import argparse

(continues on next page)
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6 import copy
7

8 import matplotlib
9

10 matplotlib.use("Agg")
11 # pylint: disable=wrong-import-position
12 from mpl_toolkits.axes_grid1 import make_axes_locatable
13 from matplotlib import animation
14 import matplotlib.pyplot as plt
15 import numpy
16 import oskar
17

18

19 # pylint: disable=too-many-instance-attributes
20 class Plotter:
21 """Generate an animation by stepping through visibility time samples."""
22

23 def __init__(self):
24 """Constructor."""
25 self._artists = ()
26 self._axes = None
27 self._base_settings = {}
28 self._fig = None
29 self._ms_list = []
30 self._ms_names = []
31 self._num_frames = 0
32 self._title = ""
33

34 def animate(
35 self, imager_settings, ms_names, title="", fps=10, filename="out.mp4"
36 ):
37 """Function to generate the animation.
38

39 Args:
40 imager_settings (dict): Base settings for OSKAR imager.
41 ms_names (list[str]): List of Measurement Sets to image.
42 title (str): Main figure title.
43 fps (int): Frames-per-second.
44 filename (str): Name of output MP4 file.
45 """
46 # Store arguments.
47 self._base_settings = imager_settings
48 self._ms_names = ms_names
49 self._title = title
50 self._ms_list.clear()
51

52 # Work out the number of frames to generate.
53 num_images = len(self._ms_names)
54 self._num_frames = 0
55 for i in range(num_images):
56 ms = oskar.MeasurementSet.open(self._ms_names[i], readonly=True)
57 num_rows = ms.num_rows

(continues on next page)
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58 num_stations = ms.num_stations
59 num_baselines = (num_stations * (num_stations - 1)) // 2
60 self._num_frames = max(self._num_frames, num_rows // num_baselines)
61 self._ms_list.append(ms)
62

63 # Create the plot panels.
64 num_cols = num_images
65 if num_cols > 4:
66 num_cols = 4
67 num_rows = (num_images + num_cols - 1) // num_cols
68 panel_size = 8
69 if num_images > 1:
70 panel_size = 5
71 if num_images > 3:
72 panel_size = 4
73 fig_size = (num_cols * panel_size, num_rows * panel_size)
74 fig, axes = plt.subplots(
75 nrows=num_rows, ncols=num_cols, squeeze=False, figsize=fig_size
76 )
77 self._fig = fig
78 self._axes = axes.flatten()
79

80 # Call the animate function.
81 anim = animation.FuncAnimation(
82 self._fig,
83 self._animate_func,
84 init_func=self._init_func,
85 frames=range(0, self._num_frames),
86 interval=1000.0 / fps,
87 blit=False,
88 )
89

90 # Save animation.
91 anim.save(filename, writer="ffmpeg", bitrate=3500)
92 plt.close(fig=fig)
93

94 def _init_func(self):
95 """Internal initialisation function called by FuncAnimation."""
96 # Create an empty image.
97 imsize = self._base_settings["image/size"]
98 zeros = numpy.zeros((imsize, imsize))
99 zeros[0, 0] = 1

100

101 # Create list of matplotlib artists that must be updated each frame.
102 artists = []
103

104 # Iterate plot panels.
105 for i in range(len(self._axes)):
106 ax = self._axes[i]
107 im = ax.imshow(zeros, aspect="equal", cmap="gnuplot2")
108 divider = make_axes_locatable(ax)
109 cax = divider.append_axes("right", size="5%", pad=0.05)

(continues on next page)
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110 cbar = plt.colorbar(im, cax=cax)
111 ax.invert_yaxis()
112 ax.axes.xaxis.set_visible(False)
113 ax.axes.yaxis.set_visible(False)
114 if i < len(self._ms_names):
115 ax.set_title(self._ms_names[i])
116 else:
117 cbar.set_ticks([])
118 cbar.set_ticklabels([])
119 artists.append(im)
120

121 # Set figure title.
122 self._fig.suptitle(self._title, fontsize=16, y=0.95)
123

124 # Return tuple of artists to update.
125 self._artists = tuple(artists)
126 return self._artists
127

128 def _animate_func(self, frame):
129 """Internal function called per frame by FuncAnimation.
130

131 Args:
132 frame (int): Frame index.
133 """
134 # Iterate plot panels.
135 num_panels = len(self._ms_list)
136 for i in range(num_panels):
137 # Read the visibility meta data.
138 freq_start_hz = self._ms_list[i].freq_start_hz
139 freq_inc_hz = self._ms_list[i].freq_inc_hz
140 num_channels = self._ms_list[i].num_channels
141 num_stations = self._ms_list[i].num_stations
142 num_rows = self._ms_list[i].num_rows
143 num_baselines = (num_stations * (num_stations - 1)) // 2
144

145 # Read the visibility data and coordinates.
146 start_row = frame * num_baselines
147 if start_row >= num_rows or start_row + num_baselines > num_rows:
148 continue
149 (u, v, w) = self._ms_list[i].read_coords(start_row, num_baselines)
150 vis = self._ms_list[i].read_column(
151 "DATA", start_row, num_baselines
152 )
153 num_pols = vis.shape[-1]
154

155 # Create settings for the imager.
156 params = copy.deepcopy(self._base_settings)
157 settings = oskar.SettingsTree("oskar_imager")
158 settings.from_dict(params)
159

160 # Make the image for this frame.
161 print(

(continues on next page)
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162 "Generating frame %d/%d, panel %d/%d"
163 % (frame + 1, self._num_frames, i + 1, num_panels)
164 )
165 imager = oskar.Imager(settings=settings)
166 imager.set_vis_frequency(freq_start_hz, freq_inc_hz, num_channels)
167 imager.update(
168 u, v, w, vis, end_channel=num_channels - 1, num_pols=num_pols
169 )
170 data = imager.finalise(return_images=1)
171

172 # Update the plot panel and colourbar.
173 self._artists[i].set_data(data["images"][0])
174 self._artists[i].autoscale()
175

176

177 def main():
178 """Main function."""
179 parser = argparse.ArgumentParser(
180 description="Make an animation from one or more Measurement Sets",
181 formatter_class=argparse.ArgumentDefaultsHelpFormatter,
182 )
183 parser.add_argument(
184 "ms_names", metavar="MS", nargs="+", help="Measurement Set path(s)"
185 )
186 parser.add_argument(
187 "--fov_deg",
188 type=float,
189 default=0.5,
190 help="Field of view to image, in degrees",
191 )
192 parser.add_argument(
193 "--size", type=int, default=256, help="Image side length, in pixels"
194 )
195 parser.add_argument(
196 "--fps", type=int, default=10, help="Frames per second in output"
197 )
198 parser.add_argument("--out", default="out.mp4", help="Output filename")
199 parser.add_argument("--title", default="", help="Overall figure title")
200 args = parser.parse_args()
201

202 # Imager settings.
203 imager_settings = {"image/fov_deg": args.fov_deg, "image/size": args.size}
204

205 # Make animation.
206 plotter = Plotter()
207 plotter.animate(
208 imager_settings, args.ms_names, args.title, args.fps, args.out
209 )
210

211

212 if __name__ == "__main__":
213 main()
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Example: Single-station drift scan of Galactic plane

As an example, the following OSKAR parameter file will generate a simulated Measurement Set for a 24-hour drift-
scan observation of the Galactic plane using a telescope model consisting of a single 38-metre diameter SKA-Low
station of 256 isotropic elements.

Download drift_scan_galaxy.ini:

[General]
app=oskar_sim_interferometer
version=2.8.0

[simulator]
double_precision=false

[sky]
healpix_fits/file=haslam_nside_128.fits
healpix_fits/min_abs_val=30.0

[observation]
mode=Drift scan
start_frequency_hz=1.0e+08
start_time_utc=2000-01-01 09:30:00.0
length=24:00:00.0
num_time_steps=96

[telescope]
input_directory=single_station.tm
pol_mode=Scalar
station_type=Isotropic beam

[interferometer]
ms_filename=drift_scan_galaxy.ms

The animation below was then produced by running the animate_ms.py script with the following command-line
arguments using the output Measurement Set:

./animate_ms.py --fov_deg=180 --fps=20 --title="OSKAR drift scan test" --out=drift_scan.
→˓mp4 drift_scan_galaxy.ms
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THREE

LOW-LEVEL RFI

These provide scripts to simulate data containing propagated radio frequency interference (RFI) from terrestrial anten-
nas.

3.1 Low-level RFI simulations

These simulations are designed to provide simulated data containing received signal from known Australian terrestrial
transmitters. The aim of providing these simulations is to enable testing of RFI-mitigation techniques and specifically
to understand the level of low-level RFI (radio frequency interference) likely to be present for SKA Low observations
and the limitations of the standard mitigation software. This has particular relevance for the Epoch of Re-ionisation
(EoR) Key Science Project and was in part motivated by the presence of such RFI in MWA EoR experiments.

There are several scripts provided in the ska-sim-low/rfi directory. For the main end-to-end simulation providing
output images and measurement sets the bash script rfi_sim.sh should be used. This runs three python scripts which
in combination will take input transmitter characteristics, calculate the propagation attenuation, the directional beam
gain and then simulate observations outputting FITS images or measurement set files as required. Alternatively these
scripts can be run individually via the command line. There is an additional script rfi/power_spectrum.py, which
is not part of the main simulation but can optionally be used to calculate a power spectrum from the FITS images.

For local environments, we recommend running rfi_sim_test.sh, which is a version of the original bash script that
is scaled to run on a laptop and executes the same three python scripts.

These simulations rely on Pycraf, OSKAR and RASCIL. Please see the relevant documentation for further information.

Details of the inputs required, models used and instructions of how to use the scripts can be found in the links below:

3.1.1 Propagation attenuation with Pycraf

These simulations use the Pycraf module in Python to calculate the propagation attenuation. The relevant pycraf-based
scripts can be found in rfi/pycraf_scripts directory. Pycraf utilises the International Telecommunications Union (ITU)
recommendation framework and specifically those of ITU-R P.452-16, P.676-10 and F.699-7 that describe the assumed
models of the antennas and expected propagation effects. For a full description of the relevant models, please see the
ITU documentation.

29
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Propagation

The propagation of the transmission can be affected a number of ways including but not limited to, the effects of the
terrain/line-of-sight, diffraction, tropospheric scatter and ducting. The Pycraf module utilises the relevant equations
described in ITU-R P.452-16 and P.676-10 from the ITU recommendations to calculate the expected attenuation as a
result of these factors between transmitter and receiver.

Terrain data

When calculating the propagation attenuation, the script will automatically download the relevant terrain data from the
NASA Shuttle Radar Topography Mission (SRTM) provided by the Jet Propulsion Laboratory. This will be stored by
default in the rfi/data/srtm_data directory.

Receivers

For the purposes of modelling the propagation attenuation and simulating the RFI, we are not using a Pycraf-based
model of receivers, but rather they are assumed to be represented by the beam-formed station beam. A line-of-sight
gain towards the transmitter is calculated for the station beam with OSKAR and used to correct the final propagation
model in the next stage.

Simulation inputs

Transmitters

The Pycraf supporting script as well as the main propagation calculation script (see below) can be run using the default
input, which represents the basic information for a single transmitter. For the full RFI simulation a CSV file containing
information on multiple transmitters is recommended. Information on the digital television antennas in Western Aus-
tralia is provided (Filtered_DTV_list_plain.csv). This represents a sub-sample of the transmitter information
included in the full ACMA (Australian Communications and Media Authority) license list, which also contains more
information with regards to each license than is needed for the simulation scripts. Each transmitter in the input CSV
should be provided with minimally a name (which will be used alongside the ID to identify the transmitter specific files
e.g. attenuation values), a location list (latitude, longitude in degrees), a power [W], a height [m], a central frequency
[MHz] and a bandwidth [MHz].

For more information on the transmitter data, see Terrestrial transmitter data.

SKA Low configuration

An input configuration file (txt or equivalent) containing position information in longitude and latitude is necessary
to run the main script. By default the Low configuration file used can be found in rfi/data/telescope_files/
SKA1-LOW_SKO-0000422_Rev3_38m_SKALA4_spot_frequencies.tm/layout_wgs84.txt.
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Calculate propagation attenuation

Propagation attenuation is calculated using SKA_low_RFI_propagation.py. Based on the input information de-
scribed above, the script will model the transmitters and calculate the expected attenuation at each frequency increment
for each requested SKA Low station. Note SKA_low_RFI_propagation.py calls SKA_low_pycraf_propagation.
py to perform the core Pycraf calculation.

The attenuation values will then be used to calculate the apparent power of the emitter as an isotropic antenna would
see it.

Use of Az/El calculations

When calculating attenuation values that are expected to be used in conjunction with OSKAR beam-gain val-
ues (i.e. if using the rfi_sim.sh bash script), it is advisable to use the default setup of --az_calc=True and
--non_below_el=True. Though it is possible for signal to be received from a transmitter that is below the hori-
zon to a given station (predominantly via atmospheric effects), OSKAR relies on a horizon limit and will return a beam
gain of zero for any transmitters below the horizon. By default, at this stage a line-of-sight calculation is done to find
the position of the transmitter with respect to the Low antennas and any transmitters below the horizon are discarded
from the simulation. An updated transmitter file in CSV format is written for use in the RASCIL simulation stage. This
prevents the simulation of essentially non-contributing transmitters in the final RASCIL script. (Note: it is possible to
perform the RASCIL simulation using an input beam gain file or a single value input, which can be used to include
these transmitters in the simulated data.)

HDF5 output

The results of the script are written into an HDF5 file, with the structure described at Radio Frequency Interference
(RFI) interface. The code will still output all the azimuth-elevation txt files for use in OSKAR. The HDF5 file is the
default input for the RASCIL-script. Note: the .hdf5 file can also be the input for the OSKAR-script, but it is not the
default behaviour at the moment.

Command line arguments

Pycraf Python script

Pycraf supporting scripts

Within the rfi/pycraf_scripts directory there is an additional script called Test_pycraf_LOW_antenna.py, which
is provided to aid with understanding the Pycraf functionality and to enable more comprehensive visualisation of the
models and calculations used.

The script is designed to be interactive and the primary input parameters should be easily identifiable within the script
itself. This script performs the Pycraf path attenuation calculation for the SKA antennas provided in the SKA Low
configuration file (see Simulation inputs for further information). There are additional options to perform and plot a
map-based attenuation calculation for visualisation. These can be selected within the code and will produce a map
of the relevant SRTM terrain data, a heatmap of the calculated attenuation and a combination of the terrain with
overlaid attenuation contours. In each case the positions of the antennas and central array reference point (referred to
as ‘LOW_E4’ in the example given) as well as the transmitter (where apppropriate) will be plotted and labelled. The
relevant options (do_map_solution, doplotAll and choose_resolution) can be used to limit the images produced
to either a small region around the array or the full distance between the array and transmitter. Example outputs are
shown below:
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3.1.2 Beam-gain calculation with OSKAR

The oskar_sim_beam_gain_sing.py script is used to run OSKAR to calculate the beam gain in the direction of each
transmitter for one or more SKA stations. This can be run in one of two ways, using an installed version of OSKAR
or using a containerised (Singularity) version of OSKAR. The python script will determine the version to use, by
default trying first the Singularity image, and if that doesn’t exist, reverting to the installed version. If the containerised
version is used, it should be located in the rfi directory. This can be replaced by a newer version as required and can
be downloaded from the OSKAR repository.

For further information please see the OSKAR documentation.

Simulation inputs

OSKAR telescope configuration

A telescope configuration file for OSKAR containing SKA Low station information. For full details see the OSKAR
documentation. As appropriate those provided with OSKAR can be used and may provide more up-to-date config-
uration information. By default a copy of a configuration file is used in rfi/data/telescope_files/SKA1-LOW_SKO-
0000422_Rev3_38m_SKALA4_spot_frequencies.tm.

HDF5 input and output

The script uses the HDF5 output file from Propagation attenuation with Pycraf script, with structure explained at Radio
Frequency Interference (RFI) interface, and write the results into another HDF5 file, which is based on the following
class:

class rfi.rfi_interface.rfi_data_cube.BeamGainDataCube(ra: float, dec: float, obs_time: str,
freq_chans: ndarray, rfi_ids: ndarray,
nstations: int)

Data Cube to contain Beam Gain information calculated by OSKAR.

Parameters

• ra – right ascension of observed source

• dec – declination of observed source

• obs_time – time of observation

• freq_chans – array of frequency channels

• rfi_ids – array of RFI source IDs

• nstations – number of SKA stations

property beam_gain

Beam gain value

export_to_hdf5(filename)
Save transformed data to HDF5

Parameters
filename – name of output file

This is true, as long as the transmitter HDF5 file name is supplied via the --input_hdf_file CLI argument. By
default, it is set to tv_transmitter_attenuation_cube.hdf5, which is the default output generated by the Propagation
attenuation with Pycraf script.
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When the script is run this way, OSKAR performs calculations per SKA station. The OSKAR output files are only
temporarily saved, then read back in so the data can be exported to HDF5. At the end of the run, the temporary files
are removed. The HDF5 file also contains pointing information (i.e right ascension and declination), which is used as
input for Simulation of visibility with RASCIL.

Transmitter data

Alternatively, one can supply an updated transmitter CSV file and individual azimuth-elevation files, created by the
Propagation attenuation with Pycraf script, via the --transmitters and --indir CLI arguments. You also have to
set the --input_hdf_file CLI argument to an empty string ("") explicitly, to avoid using the HDF5 set-up.

In this case, OSKAR calculates beam gains for the array centre, given by the single az-el input for each transmitter
(instead of a value per transmitter per SKA station). For more information on the transmitter data, follow Terrestrial
transmitter data.

The python script outputs beam-gain values as a function of frequency as txt files.

Command line arguments

OSKAR Python script

3.1.3 Simulation of visibility with RASCIL

The final stage of the three-stage RFI simulation, simulate_low_rfi_visibility_propagation.py uses RASCIL
to calculate the visibility measured by SKA-Low (LOW) for a number of emitters, and generate output images or
measurement sets. We are interested in the effects of RFI signals that cannot be detected in the visibility data. Therefore,
in our simulations we add transmitter apparent power and beam-gain information calculated in the previous stages.

As before, we study the effects of a TV station located in Perth, AU, emitting a broadband signal of a known power
(information stored in CSV files in rfi/data/transmitters). We presume the following scenario:

The emission from the TV station arrives at LOW stations with phase delay and attenuation. We calculate Propagation
attenuation with Pycraf . The RFI enters LOW stations in a side-lobe of the station beam. We perform Beam-gain
calculation with OSKAR, which, together with the pre-calculated apparent power values, is used as an input for the
RASCIL script. The RFI enters each LOW station with fixed delay and zero fringe rate (assuming no e.g. ionospheric
ducting or reflection from a plane). When tracking a source on the sky, the signal from one station is delayed and fringe-
rotated. Fringe rotation stops the fringe from a source at the phase tracking centre but phase-rotates the RFI, which
now becomes time-variable. To de-correlate the RFI signal, the correlation data are time- and frequency-averaged over
a timescale appropriate for the station field of view.

We want to study the effects of this RFI on statistics of the visibilities, and on images made on source and at the pole.
The simulate_low_rfi_visibility_propagation.py script averages the data producing baseline-dependent de-
correlation and uses RASCIL functions and input data from the previous stages to produce FITS images, and un-
averaged MeasurementSets (one per time chunk). The images are on signal channels and on pure noise channels, and
for the source of interest. Distributed processing is implemented via Dask.
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Simulation inputs

SKA Low configuration

An input configuration file (txt or equivalent, called as the “antenna_file”) containing position in-
formation in longitude and latitude. The default configuration file (rfi/data/telescope_files/
SKA1-LOW_SKO-0000422_Rev3_38m_SKALA4_spot_frequencies.tm/layout_wgs84.txt) is used by the
code if the --use_antfile argument is set to True, else it uses the RASCIL equivalent. If --use_antfile ==
True, you can specify an alternative configuration file by setting the --antenna_file CLI argument (see RASCIL
Python script).

Transmitter apparent power

The apparent power of the transmitter is calculated by Pycraf Python script and stored in an HDF5 file, together with
other relevant information, such as time and station-dependent azimuth and elevation data. For more information,
follow Propagation attenuation with Pycraf .

Beam gain data

Beam gain values as a function of frequency, calculated by OSKAR Python script and stored in an HDF5 file, together
with pointing information (i.e. right ascension and declination). For more information, follow Beam-gain calculation
with OSKAR.

Usage and command line arguments

RASCIL Python script

Power spectrum

The power_spectrum.py script can be used following the production of output FITS images from the simulation to
produce power spectrum plots.

Usage and command line arguments: Power Spectrum Python script

A command line interface is also available to accommodate multiple different RFI sources (at the moment, TV antennas
only), and produce a standardized output (in HDF5 format) of Propagation attenuation scripts, which can be consumed
by visibility simulations.

3.1.4 Radio Frequency Interference (RFI) interface

Command line tool to standardize the output of RFI attenuation scripts into a format, which can be processed by
visibility simulation pipelines. The agreed standard format is HDF5.

The following RFI sources are supported:

- TV Transmitter
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Usage

RFI Interface

Input

The Interface is fully compatible with the Propagation attenuation scripts described in Propagation attenuation with
Pycraf . At the moment, the following input arguments can be directly modified from the interface:

--transmitter_file path to the CSV file containing the TV transmitter information.
--n_time_chunks number of time samples to run the simulation for; default = 1.␣
→˓Optional

--frequency_range start and end of frequency range in MHz (specified as <freq_start>␣
→˓and <freq_end>). Optional.
--n_channels number of channels to run the simulation for (specified as <n_
→˓channels>). Optional.

Note, if any of <freq_start>, <freq_end>, or <n_channels> is supplied, the other two also needs to be part of
the input arguments.

Output

The RFI signal data are saved in an HDF5 file with the following structure:

• Source ID, string, dimensions: (nsources)

• Source type, string, dimensions: (nsources)

• Time samples, string, dimensions: (ntimes)

• Frequency channels, FP64, dimensions: (nfreqs), units: [Hz]

• SKA station ID, string, dimensions: (nstations)

• Apparent source coordinates in antenna rest frame, FP64, dimensions: (nsources, ntimes, nants, 3) These are
[azimuth, elevation, distance], units: [degree, degree, m]

• Transmitter power as received by an isotropic antenna, FP64, dimensions: (nsources, ntimes, nants, nfreqs) This
does not include the antenna beam pattern which will be applied in the visibility simulation pipeline. units: [dB]

Class description

DataCube

class rfi.rfi_interface.rfi_data_cube.DataCube(times: list, freqs: list, station_ids: list, rmax=None,
station_skip=None)

Class to transform RFI data and save the result in an HDF5 file.

Parameters

• times – list of time samples the simulation ran for

• freqs – list of frequency channels the simulation ran for

• station_ids – list of station ids that were used in the simulation
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• rmax – maximum distance of SKA station from its array centre

• station_skip – . . .

rmax and station_skip are needed for transferring information from the propagation script to the visibility simu-
lation script

append_data(new_rfi_data: DataCubePerSource)
Append data from a DataCubePerSource object to the existing arrays.

Parameters
new_rfi_data – input DataCubePerSource object containing RFI data for a single source

export_to_hdf5(filename)
Save transformed data to HDF5

Parameters
filename – name of output file

validate_input_data(input_data)
Validate input data.

Data are valid if:

• source_id exists

• time samples of the input match the ones that the DataCube was initialized with

• frequency channels of the input match the ones that the DataCube was initialized with

• station ids of the input match the ones that the DataCube was initialized with

Parameters
input_data – input DataCubePerSource object containing RFI data for a single source

Additional information and the list of command line arguments of relevant scripts can be found here:

3.1.5 Supplemental Information

Supplement material to the RFI simulations scripts.

Terrestrial transmitter data

The example RFI simulations focus on digital television (DTV) transmitters and specifically a single antenna located
in Perth, AU. However, there are a significant number of DTV as well as other terrestrial transmitters operating in
Western Australia. Information has been gathered on the current broadcasting transmitters in Western Australia from
several sources including the Australian Communications and Media Authority (ACMA) license register, Oz Digital
TV and TX Australia. The ACMA is extensive and, if desired, a full list of transmitters is available from the link above
(note the full file size will be several GBs). A CSV copy of the simplified ACMA information for only the Western
Australia DTV antennas is included in the data/transmitters directory (Filtered_DTV_list_plain.csv) which is
usable with theses simulations. Other example CSV files are also present in the directory, containing only a handful of
transmitters, which can be used for testing. Alternatively, filtering the larger csv file for specific areas or frequencies
can provide larger sub-groups to simulate.

The main characteristics of the DTV transmitters have been taken primarily from a copy of the current license register
from ACMA, which provides power output, direction of polarisation (H, horizontal or V, vertical) as well as antenna
type (e.g. omnidirectional or directional). A number of the transmitter types have beam pattern information available
alongside the license information, which contains antenna gains for a number of azimuthal directions. Where no further
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information is available, the transmitter is assumed to be represented by a fixed-link antenna as described in F.699-7.
The map below shows the locations of the SKA-Low stations and the DTV transmitters in Western Australia that
transmit in the 50 - 350 MHz range. The map below shows the locations of the SKA-Low stations and the relevant
transmitters in Western Australia that transmit in the 50 - 350 MHz range. DTV and DR (digital radio) transmitters
are shown by default. FM transmitters can also be shown by opening the map. The colour range displays groups of
transmitters based on their emitting power.

3.1.6 CLI

Below can be found the command line interface, usage and command line argument description, of the three main RFI
simulation scripts and any additional relevant scripts.

Pycraf Python script

Calculate RFI propagation

usage: SKA_low_RFI_propagation.py [-h] [--transmitters TRANSMITTERS]
[--set_freq SET_FREQ] [--freq FREQ]
[--set_bandwidth SET_BANDWIDTH]
[--bandwidth BANDWIDTH]
[--n_channels N_CHANNELS]
[--frequency_range FREQUENCY_RANGE FREQUENCY_RANGE]
[--az_calc AZ_CALC] [--trans_out TRANS_OUT]
[--non_below_el NON_BELOW_EL]
[--srtm_directory SRTM_DIRECTORY]
[--antenna_file ANTENNA_FILE] [--rmax RMAX]
[--station_skip STATION_SKIP]
[--output_dir OUTPUT_DIR]
[--array_centre ARRAY_CENTRE]
[--plot_attenuation PLOT_ATTENUATION]
[--n_time_chunks N_TIME_CHUNKS]
[--frequency_variable FREQUENCY_VARIABLE]
[--time_variable TIME_VARIABLE]
[--omega OMEGA] [--temperature TEMPERATURE]
[--pressure PRESSURE]
[--timepercent TIMEPERCENT]
[--height_rg HEIGHT_RG] [--diam DIAM]
[--zones ZONES] [--hprof_step HPROF_STEP]

Named Arguments

--transmitters Location of input csv file containing transmitter properties.

--set_freq Choose the central frequency with –freq, otherwise read it from the csv file

--freq Central frequency (MHz)

--set_bandwidth Choose the bandwidth with –bandwidth, otherwise read it from the csv file

--bandwidth Bandwidth (MHz)
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--n_channels Number of frequency channels. (Must match nchannels_per_chunk for RFI sim-
ulation run)

--frequency_range Frequency range (MHz)

--az_calc Calculate and output the Az/El of the transmitter

--trans_out Name of output transmitter list. File-type not required. If ‘infile’ will supplement
the input name of the input transmitter file. If not full path, it will be written to
output_dir directory.

--non_below_el If transmitter elevation to array centre < 0 deg, remove from list and do not sim-
ulate.

--srtm_directory Directory for the SRTM files required by pycraf for terrain information.

--antenna_file Location of text files with antenna locations

--rmax Maximum distance of station from centre (m)

--station_skip Decimate stations by this factor

--output_dir Default directory to write attenuation outputs

--array_centre List containing name, latitude (degs), longitude (degs) for the SKA Low array
centre

--plot_attenuation Output plot of attenuation values for each transmitter at the array centre.

--n_time_chunks Number of time samples to simulate. (Same as the RASCIL-based part’s –ninte-
grations_per_chunk arg.)

--frequency_variable Simulate frequency-variable RFI signal?

--time_variable Simulate time-variable RFI signal?

--omega Fraction of path over sea. See pycraf documentation.

--temperature Assumed temperature (K). See pycraf documentation.

--pressure Assumed pressure (hPa). See pycraf documentation.

--timepercent Time percent. See pycraf documentation and P.452 report.

--height_rg Assumed height of receiver above ground (m). See pycraf documentation.

--diam Assumed diameter of transmitter (m). See pycraf documentation.

--zones List of clutter types for transmitter and receiver, default is unknown. See pycraf
documentation.

--hprof_step Distance resolution of the calculated solution. See pycraf documentation.

OSKAR Python script

Calculate beam gain for SKA1-Low

usage: oskar_sim_beam_gain_sing.py [-h] [--ra RA] [--declination DECLINATION]
[--indir INDIR] [--outdir OUTDIR]
[--oskar_path OSKAR_PATH]
[--telescope_path TELESCOPE_PATH]
[--input_hdf_file INPUT_HDF_FILE]

(continues on next page)
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(continued from previous page)

[--transmitters TRANSMITTERS]
[--set_freq SET_FREQ] [--freq FREQ]
[--set_bandwidth SET_BANDWIDTH]
[--bandwidth BANDWIDTH]
[--N_channels N_CHANNELS]
[--frequency_range FREQUENCY_RANGE FREQUENCY_RANGE]
[--choose_range CHOOSE_RANGE]
[--beam_gain_out BEAM_GAIN_OUT]

Named Arguments

--ra Right Ascension (deg)

--declination Declination

--indir Directory where transmitter Az_El or HDF5 files are stored

--outdir Directory to store results

--oskar_path Path to the singularity SIF file for OSKAR

--telescope_path Path to telescope model directory

--input_hdf_file HDF5 file located in –indir, which contains necessary coordinate information for
each RFI source.If not specified, use individual az/el and transmitter files located
in –indir.

--transmitters CSV file containing transmitter properties; not used with HFD data

--set_freq Choose the central frequency with –freq, otherwise read it from the CSV file;not
used when input is an HDF5 file.

--freq Central frequency (MHz); not used when input is an HDF5 file.

--set_bandwidth Choose the bandwidth with –bandwidth, otherwise read it from the CSV file; not
used when input is an HDF5 file.

--bandwidth Bandwidth (MHz); not used when input is an HDF5 file.

--N_channels Number of frequency channels (must match nchannels_per_chunk for RFI simu-
lation run); not used when input is an HDF5 file.

--frequency_range Frequency range (MHz); not used when input is an HDF5 file.

--choose_range use channels over full frequency range given. If False, default to only over spec-
ified bandwidth. If full frequency range larger than bandwidth number of output
channels will be those within the bandwidth only. Not used when input is an HDF5
file.

--beam_gain_out Starting name of output beam gain file for each transmitter. Directory and file-type
not required. Not used when input is an HDF5 file.
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RASCIL Python script

Simulate RFI data with RASCIL

usage: simulate_low_rfi_visibility_propagation.py [-h] [--seed SEED]
[--noise NOISE] [--ra RA]
[--declination DECLINATION]
[--nchannels_per_chunk NCHANNELS_PER_

→˓CHUNK]
[--channel_average CHANNEL_AVERAGE]
[--frequency_range FREQUENCY_RANGE␣

→˓FREQUENCY_RANGE]
[--time_average TIME_AVERAGE]
[--integration_time INTEGRATION_TIME]
[--time_range TIME_RANGE TIME_RANGE]
[--input_file INPUT_FILE]
[--use_beamgain USE_BEAMGAIN]
[--beamgain_hdf_file BEAMGAIN_HDF_FILE]
[--beamgain_dir BEAMGAIN_DIR]
[--use_antfile USE_ANTFILE]
[--antenna_file ANTENNA_FILE]
[--write_ms WRITE_MS]
[--msout MSOUT]
[--output_dir OUTPUT_DIR]
[--use_dask USE_DASK]

Named Arguments

--seed Random number seed

--noise Add random noise to the visibility samples?

--ra Right Ascension (degrees)

--declination Declination (degrees)

--nchannels_per_chunk Number of channels in a chunk

--channel_average Number of channels in a chunk to average

--frequency_range Frequency range (Hz)

--time_average Number of integrations in a chunk to average

--integration_time Integration time (s)

--time_range Hourangle range (hours)

--input_file Full path to the HDF5 file, which contains necessary RFI information for each
RFI source.

--use_beamgain Use beam gain values in calculation

--beamgain_hdf_file HDF5 file with beam gain, transmitter, frequency, and pointing (RA, DEC) in-
formation.

--beamgain_dir Folder containing multiple Numpy files or the HDF file with beam gain informa-
tion.
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--use_antfile Use the antenna file in the rfi data in calculation, otherwise use from RASCIL

--antenna_file txt file containing antenna locations

--write_ms Write measurement set?

--msout Name for MeasurementSet

--output_dir Output directory for storing files

--use_dask Use dask to distribute processing?

Power Spectrum Python script

Display power spectrum of image

usage: power_spectrum.py [-h] [--image IMAGE]
[--signal_channel SIGNAL_CHANNEL]
[--noise_channel NOISE_CHANNEL]
[--resolution RESOLUTION]

Named Arguments

--image Image name

--signal_channel Channel containing both signal and noise

--noise_channel Channel containing noise only

--resolution Resolution in radians needed for conversion to K

RFI Interface

Usage:
rfi_source_signal_interface.py tv_antenna --transmitters=<transmitter-csv> [<n_

→˓channels> <freq_start> <freq_end>]
rfi_source_signal_interface.py aircraft
rfi_source_signal_interface.py (-h | --help)

Arguments:
# if tv_antenna
--transmitters=<transmitter-csv> Location of input CSV file containing TV␣

→˓transmitter properties

Options:
-h --help Show this screen.

# if any of the following is provided, all three has to be provided as a CLI argument
<n_channels> Number of frequency channels. Default: 3
<freq_start> Start of Frequency range [MHz]. Default: 170.5
<freq_end> End of Frequency range [MHz]. Default: 184.5
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