

SDP Scripting Library

The SDP scripting library is a high-level interface for writing processing
scripts. Its goal is to provide abstractions to enable the developer to express
the high-level organisation of a processing script without needing to interact
directly with the low-level interfaces such as the SDP configuration library.

	Development

	Functionality

	Receive Process and Port Configuration

	API

Indices and tables

	Index

Development

Installation

The library can be installed using pip but you need to make sure to use the
SKA artefact repository as the index:

pip install \
 --index-url https://artefact.skao.int/repository/pypi-all/simple \
 ska-sdp-scripting

To install it using a requirements.txt file, the pip options can be
added to the top of the file like this:

--index-url https://artefact.skao.int/repository/pypi-all/simple
ska-sdp-scripting

Usage

Once the SDP scripting library has been installed, use:

import ska_sdp_scripting

Develop a new script

The steps to develop and test an SDP processing script can be found at
Script Development [https://developer.skao.int/projects/ska-sdp-script/en/latest/script-development.html].

Functionality

The required functionality of the scripting library is as follows.

Starting, monitoring and ending a script

At the start

	Claim the processing block.

	Get the parameters defined in the processing block. They should be checked
against the parameter schema defined for the script.

Resource requests

	Make requests for input and output buffer space. The script will
calculate the resources it needs based on the parameters, then request them
from the processing controller. This is currently a placeholder.

Declare script phases

	Scripts will be divided into phases such as preparation, processing,
and clean-up. In the current implementation, only one phase can be
declared, which we refer to as the ‘work’ phase.

Execute the work phase

	On entry to the work phase, it waits until the resources are available.
Meanwhile it monitors the processing block to see it has been cancelled.
For real-time scripts, it also checks if the execution block has been
cancelled.

	Deploys execution engines to execute a script/function.

	Monitors the execution engines and processing block state. Waits until the
execution is finished, or the processing block is cancelled.

	Continuously updates the processing block state with the status of execution
engine deployments. It provides aggregate information about these statuses
to inform other components about the readiness of deployments.

At the end

	Remove the execution engines to release the resources.

	Update processing block state with information about the success or failure
of the script.

Receive scripts

	Get IP and MAC addresses for the receive processes.

	Monitor receive processes. If any get restarted, then the addresses may need to be updated.

	Write the addresses in the appropriate format into the processing block state.

Compatibility with the telescope model library

We keep the scripting library compatible with the latest version
of the telescope model library [https://gitlab.com/ska-telescope/ska-telmodel].
If you use a configuration string that is based on an older version
of the telescope model, you may experience errors or unexpected behaviour.

Receive Process and Port Configuration

Multiple Port Configuration

The scripting library has the capability to configure multiple ports.
This allows to deploy a single receiver with multiple ports. In another word, this will allow a single receiver
to receive data for a single SPEAD stream coming from multiple processes.

Now, assuming each sender sends data for 1 channel and all baselines, then we’ll want to have as many ports as
channels on the receiver side. For cbf-receive, a single receiver process can receive on multiple ports already,
and this is configurable via reception.receiver_port_start and reception.num_ports.

To make sense of multiple ports, the port map was required to be updated from a three-value list (ADR-10) to a
four-value list. The four value defines the increment of the port number.

For example, if we set reception.receiver_port_start = 9000 and reception.num_ports = 3 , count= 3,
and max_channels=1 then the resulting port_map would look like:

"port": [[0, 9000, 1, 0], [1, 9001, 1, 1], [2, 9002, 1, 2]]

API

Processing block

	
class ska_sdp_scripting.processing_block.ProcessingBlock(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str] = None)

	Claim the processing block.

	Parameters:

	pb_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – processing block ID

	
configure_recv_processes_ports(scan_types, max_channels_per_process, port_start, channels_per_port)

	Calculate how many receive process(es) and ports are required,
And configure a dictionary to be fed back into the
receive_addresses attribute.

	Parameters:

	
	scan_types – scan types from EB

	max_channels_per_process – maximum number of channels per process

	port_start – starting port the receiver will be listening in

	channels_per_port – number of channels to be sent to each port

	Returns:

	tuple(configured receive dict, number of processes)

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
create_phase(name: str [https://docs.python.org/3/library/stdtypes.html#str], requests: List [https://docs.python.org/3/library/typing.html#typing.List][BufferRequest]) → Phase

	Create a script phase for deploying execution engines.

The phase is created with a list of resource requests which must be
satisfied before the phase can start executing. For the time being the
only resource requests are (placeholder) buffer reservations, but
eventually this will include compute requests too.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the phase

	requests (list of BufferRequest) – resource requests

	Returns:

	the phase

	Return type:

	Phase

	
exit()

	Perform clean-up.

	
get_parameters(schema=None)

	Get script parameters from processing block.

The schema checking is not currently implemented.

	Parameters:

	schema – schema to validate the parameters

	Returns:

	processing block parameters

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_scan_types() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get scan types from the execution block.

Updates the scan types with the default parameters and channels.

This is only supported for real-time scripts

	Returns:

	scan types

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
nested_parameters(parameters: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Convert flattened dictionary to nested dictionary.

	Parameters:

	parameters – parameters to be converted

	Returns:

	nested parameters

	
receive_addresses(configured_host_port, chart_name=None, service_name=None, namespace=None)

	Generate receive addresses and update the processing block state.

	Parameters:

	
	configured_host_port – constructed host and port

	chart_name – Name of the statefulset

	service_name – Name of the headless service

	namespace – namespace where it’s going to be deployed

	
static request_buffer(size: float [https://docs.python.org/3/library/functions.html#float], tags: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) → BufferRequest

	Request a buffer reservation.

This returns a buffer reservation request that is used to create a
script phase. These are currently only placeholders.

	Parameters:

	
	size (float [https://docs.python.org/3/library/functions.html#float]) – size of the buffer

	tags (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – tags describing the type of buffer required

	Returns:

	buffer reservation request

	Return type:

	BufferRequest

	
update_parameters(default_parameters: dict [https://docs.python.org/3/library/stdtypes.html#dict], parameters: dict [https://docs.python.org/3/library/stdtypes.html#dict] | Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping])

	Nested overwrite of default_parameter values with ones in parameters.

	Parameters:

	
	default_parameters –
	dict:

	default parameter values

	parameters –
	dict:

	script specific parameters

	Returns:

	processing block additional parameters

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Buffer request

	
class ska_sdp_scripting.buffer_request.BufferRequest(size: float [https://docs.python.org/3/library/functions.html#float], tags: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]])

	Request a buffer reservation.

This is currently just a placeholder.

	Parameters:

	
	size (float [https://docs.python.org/3/library/functions.html#float]) – size of the buffer

	tags (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – tags describing the type of buffer required

	
size: float [https://docs.python.org/3/library/functions.html#float]

	

	
tags: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

Script phase

	
class ska_sdp_scripting.phase.Phase(name: str [https://docs.python.org/3/library/stdtypes.html#str], list_requests: List [https://docs.python.org/3/library/typing.html#typing.List], config: ska_sdp_config.Config, pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], eb_id: str [https://docs.python.org/3/library/stdtypes.html#str], script_kind: str [https://docs.python.org/3/library/stdtypes.html#str])

	Script phase.

This should not be created directly, use the
ProcessingBlock.create_phase() method instead.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the phase

	list_requests (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of requests

	config (ska_sdp_config.Config) – SDP configuration client

	pb_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – processing block ID

	eb_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – execution block ID

	script_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – script kind

	
check_state(txn: ska_sdp_config.config.Transaction, check_realtime: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Check the state of the processing block.

Check if the PB is finished or cancelled, and for real-time scripts
check if the EB is finished or cancelled.

	Parameters:

	
	txn (ska_sdp_config.Transaction) – SDP configuration transaction

	check_realtime (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to check execution block state
if the processing block is realtime (i.e. cancel
processing script for FINISHED/CANCELLED)

	
ee_deploy_dask(name: str [https://docs.python.org/3/library/stdtypes.html#str], n_workers: int [https://docs.python.org/3/library/functions.html#int], func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], f_args: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Deploy a Dask execution engine.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – deployment name

	n_workers (int [https://docs.python.org/3/library/functions.html#int]) – number of Dask workers

	func (function) – function to execute

	f_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – function arguments

	Returns:

	Dask execution engine deployment

	Return type:

	DaskDeploy

	
ee_deploy_helm(deploy_name: str [https://docs.python.org/3/library/stdtypes.html#str], values: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Deploy a Helm execution engine.

This can be used to deploy any Helm chart.

	Parameters:

	
	deploy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of Helm chart

	values (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – values to pass to Helm chart

	Returns:

	Helm execution engine deployment

	Return type:

	HelmDeploy

	
ee_deploy_test(deploy_name: str [https://docs.python.org/3/library/stdtypes.html#str], func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] = None, f_args: List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None) → EEDeploy

	Deploy a fake execution engine.

This is used for testing and example purposes.

	Parameters:

	
	deploy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – deployment name

	func (function) – function to execute

	f_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – function arguments

	Returns:

	fake execution engine deployment

	Return type:

	FakeDeploy

	
ee_remove() → None [https://docs.python.org/3/library/constants.html#None]

	Remove execution engines deployments.

	
is_eb_finished(txn: ska_sdp_config.config.Transaction) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the EB is finished or cancelled.

	Parameters:

	txn (ska_sdp_config.Transaction) – config db transaction

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
monitor_deployments(txn: ska_sdp_config.config.Transaction, iteration: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Monitor deployments, update the deployment status
in the processing block state based on the deployments’
pods’ state.

Also update the deployments_ready pb state key.

At the moment deployments_ready = True only if all
deployments are RUNNING. Else, it is False.

	Parameters:

	
	txn – Transaction object (config.txn)

	iteration – number of txn iteration

	
update_pb_state(status: ProcessingBlockStatus = ProcessingBlockStatus.UNSET)

	Update processing block state.

If the status is UNSET, it is marked as finished.

	Parameters:

	status (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – status

	
wait_loop(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ska_sdp_config.config.Transaction], bool [https://docs.python.org/3/library/functions.html#bool]], time_to_ready: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Wait loop to check the status of the processing block.
It also updates the processing block state with deployment
statuses for realtime scripts.

	Parameters:

	
	func – function to check condition
for exiting the watcher loop

	time_to_ready – set deployments_ready to true after
this amount of time has passed (seconds). Only for
deployments deployed with phase.ee_deploy_test

Execution engine deployment

	
class ska_sdp_scripting.ee_base_deploy.EEDeploy(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], config: ska_sdp_config.Config)

	Base class for execution engine deployment.

	Parameters:

	
	pb_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – processing block ID

	config (ska_sdp_config.Client) – SDP configuration client

	
get_id() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the deployment ID.

	Returns:

	deployment ID

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
is_finished(txn: ska_sdp_config.config.Transaction) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the deployment is finished.

	Parameters:

	txn (ska_sdp_config.Transaction) – configuration transaction

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
remove(deploy_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Remove the execution engine.

	Parameters:

	deploy_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – deployment ID

	
update_deploy_status(status: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Update deployment status.

	Parameters:

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – status

Helm EE Deployment

	
class ska_sdp_scripting.helm_deploy.HelmDeploy(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], config: ska_sdp_config.Config, deploy_name: str [https://docs.python.org/3/library/stdtypes.html#str], values: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None)

	Deploy Helm execution engine.

This should not be created directly, use the Phase.ee_deploy_helm()
method instead.

	Parameters:

	
	pb_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – processing block ID

	config (ska_sdp_config.Config) – SDP configuration client

	deploy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of Helm chart to deploy

	values (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – values to pass to Helm chart

Dask EE deployment

	
class ska_sdp_scripting.dask_deploy.DaskDeploy(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], config: ska_sdp_config.Config, deploy_name: str [https://docs.python.org/3/library/stdtypes.html#str], n_workers: int [https://docs.python.org/3/library/functions.html#int], func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], f_args: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Deploy a Dask execution engine.

The function when called with the arguments should return a Dask graph. The
graph is then executed by calling the compute method:

result = func(*f_args)
result.compute()

This happens in a separate thread so the constructor can return
immediately.

This should not be created directly, use the Phase.ee_deploy_dask()
method instead.

	Parameters:

	
	pb_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – processing block ID

	config (ska_sdp_config.Client) – configuration DB client

	deploy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – deployment name

	n_workers (int [https://docs.python.org/3/library/functions.html#int]) – number of Dask workers

	func (function) – function to execute

	f_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – function arguments

Fake EE deployment

	
class ska_sdp_scripting.fake_deploy.FakeDeploy(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], config: ska_sdp_config.Config, deploy_name: str [https://docs.python.org/3/library/stdtypes.html#str], func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] = None, f_args: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None)

	Deploy a fake execution engine.

The function is called with the arguments in a separate thread so the
constructor can return immediately.

This should not be created directly, use the Phase.ee_deploy_test()
method instead.

	Parameters:

	
	pb_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – processing block ID

	config (ska_sdp_config.Client) – SDP configuration client

	deploy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – deployment name

	func (function) – function to execute

	f_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – function arguments

	
set_deployments_ready(time_to_ready: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Set deployments_ready to True

	Parameters:

	time_to_ready – set deployments_ready to true after
this amount of time has passed (seconds)

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

B

 	
 	BufferRequest (class in ska_sdp_scripting.buffer_request)

C

 	
 	check_state() (ska_sdp_scripting.phase.Phase method)

 	
 	configure_recv_processes_ports() (ska_sdp_scripting.processing_block.ProcessingBlock method)

 	create_phase() (ska_sdp_scripting.processing_block.ProcessingBlock method)

D

 	
 	DaskDeploy (class in ska_sdp_scripting.dask_deploy)

E

 	
 	ee_deploy_dask() (ska_sdp_scripting.phase.Phase method)

 	ee_deploy_helm() (ska_sdp_scripting.phase.Phase method)

 	ee_deploy_test() (ska_sdp_scripting.phase.Phase method)

 	
 	ee_remove() (ska_sdp_scripting.phase.Phase method)

 	EEDeploy (class in ska_sdp_scripting.ee_base_deploy)

 	exit() (ska_sdp_scripting.processing_block.ProcessingBlock method)

F

 	
 	FakeDeploy (class in ska_sdp_scripting.fake_deploy)

G

 	
 	get_id() (ska_sdp_scripting.ee_base_deploy.EEDeploy method)

 	
 	get_parameters() (ska_sdp_scripting.processing_block.ProcessingBlock method)

 	get_scan_types() (ska_sdp_scripting.processing_block.ProcessingBlock method)

H

 	
 	HelmDeploy (class in ska_sdp_scripting.helm_deploy)

I

 	
 	is_eb_finished() (ska_sdp_scripting.phase.Phase method)

 	
 	is_finished() (ska_sdp_scripting.ee_base_deploy.EEDeploy method)

M

 	
 	monitor_deployments() (ska_sdp_scripting.phase.Phase method)

N

 	
 	nested_parameters() (ska_sdp_scripting.processing_block.ProcessingBlock method)

P

 	
 	Phase (class in ska_sdp_scripting.phase)

 	
 	ProcessingBlock (class in ska_sdp_scripting.processing_block)

R

 	
 	receive_addresses() (ska_sdp_scripting.processing_block.ProcessingBlock method)

 	
 	remove() (ska_sdp_scripting.ee_base_deploy.EEDeploy method)

 	request_buffer() (ska_sdp_scripting.processing_block.ProcessingBlock static method)

S

 	
 	set_deployments_ready() (ska_sdp_scripting.fake_deploy.FakeDeploy method)

 	
 	size (ska_sdp_scripting.buffer_request.BufferRequest attribute)

T

 	
 	tags (ska_sdp_scripting.buffer_request.BufferRequest attribute)

U

 	
 	update_deploy_status() (ska_sdp_scripting.ee_base_deploy.EEDeploy method)

 	
 	update_parameters() (ska_sdp_scripting.processing_block.ProcessingBlock method)

 	update_pb_state() (ska_sdp_scripting.phase.Phase method)

W

 	
 	wait_loop() (ska_sdp_scripting.phase.Phase method)

 nav.xhtml

 Table of Contents

 		
 SDP Scripting Library

 		
 Development

 		
 Installation

 		
 Usage

 		
 Develop a new script

 		
 Functionality

 		
 Starting, monitoring and ending a script

 		
 At the start

 		
 Resource requests

 		
 Declare script phases

 		
 Execute the work phase

 		
 At the end

 		
 Receive scripts

 		
 Compatibility with the telescope model library

 		
 Receive Process and Port Configuration

 		
 Multiple Port Configuration

 		
 API

 		
 Processing block

 		
 ProcessingBlock

 		
 Buffer request

 		
 BufferRequest

 		
 Script phase

 		
 Phase

 		
 Execution engine deployment

 		
 EEDeploy

 		
 Helm EE Deployment

 		
 HelmDeploy

 		
 Dask EE deployment

 		
 DaskDeploy

 		
 Fake EE deployment

 		
 FakeDeploy

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/plus.png

_static/file.png

_static/minus.png

