
ska-sdp-prot-imaging-pipeline
Documentation

Release 0.1.0-beta

See CONTRIBUTORS

Nov 23, 2022

CONTENTS

1 Structure of the pipeline 3

2 Components used from RASCIL 5
2.1 Data models . 5
2.2 Control functions and processing components . 5

3 Processing Function Library integration 9
3.1 Integration steps . 9
3.2 DFT . 9
3.3 Future work . 9

4 Running the prototype pipeline with Dask 11

5 Command Line Interface to run the pipeline 13
5.1 Named Arguments . 13

6 Continuum Imaging Pipeline python class 15

Index 17

i

ii

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

This project contains a prototype continuum imaging pipeline, which is based on the RASCIL continuum imaging
pipeline (part of rascil_imager). It aims to provide a test-bed for integrating and testing accelerated processing functions
from the Processing Function Library.

CONTENTS 1

https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline
https://ska-telescope.gitlab.io/external/rascil/
https://ska-telescope.gitlab.io/external/rascil/apps/rascil_imager.html
https://gitlab.com/ska-telescope/sdp/ska-sdp-func

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

2 CONTENTS

CHAPTER

ONE

STRUCTURE OF THE PIPELINE

A discussion of the pipeline structure, including a diagram, can be found at the following Confluence page: Stand-alone
imaging pipeline for processing function integrations. We keep updating the page and the diagram, and related pages,
as more functions are integrated from the Processing Function Library.

The structure follows the one of the RASCIL Continuum Imaging Pipeline. This is the equivalent if the ICAL pipeline
without the self-calibration part (i.e. do_selfcal = False).

The following diagram is taken from the Confluence page and it shows the state of the structure and the integration
as of 12 May 2022. On the left, we list the relevant code information from RASCIL, while on the right the already
integrated Processing Function Library equivalents are found.

3

https://confluence.skatelescope.org/display/SE/Stand-alone+imaging+pipeline+for+processing+function+integrations
https://confluence.skatelescope.org/display/SE/Stand-alone+imaging+pipeline+for+processing+function+integrations
https://gitlab.com/ska-telescope/external/rascil/-/blob/master/rascil/workflows/rsexecute/pipelines/pipeline_skymodel_rsexecute.py#L43

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

Currently, this structure is implemented using the ContinuumImagingPipeline class and tha main function in imag-
ing_prototype.py.

4 Chapter 1. Structure of the pipeline

https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_prototype.py
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_prototype.py

CHAPTER

TWO

COMPONENTS USED FROM RASCIL

High-level functions are used from RASCIL, while data models are in ska-sdp-datamodels, which contains data models
extracted from RASCIL. In addition, processing components (functions) are also taken from RASCIL, with the option
of running the available ones from the Processing Function Library instead.

As we integrate more and more Processing Function Library functions the list below may change.

2.1 Data models

• Visibility:
RASCIL’s basic visibility model. It is an observation with one direction. We load data from a Measure-
mentSet into this object (or a list of them). It is based on the xarray.Dataset object.

• Image:
In-memory representation of an image, with pixels as data variables, and the Astropy implementation of
the World Coordinate System, which is stored in attribute format. It inherits from xarray.Dataset.

• SkyModel:
Simple Python class. Has various methods, the most important ones are component and image. Former
containing a list of SkyComponents, latter containing a model image (RASCIL Image object). At minimum,
an image object is needed to initialize a SkyModel.

• SkyComponent:
Represents a component source on the sky, with flux, direction, frequency, polarisation, etc.

2.2 Control functions and processing components

These functions coordinate other processing components and lower level functions. Where applicable, we list a set
of arguments that can be controlled by the user when the prototype pipeline is executed, and another set that is either
hard coded at the moment or the code simply uses some defaults defined by the functions that need them. These latter
arguments may be promoted to user-defined ones if we see fit, however, at the moment we keep them as is for simplicity.

We note where in the ContinuumImagingPipeline, or in other prototype-pipeline functions each RASCIL function is
used to give context to their usage.

Some of the functions below were migrated into a new package called ska-sdp-func-python during the autumn of 2022.
The links point to this new repository.

• create_visibility_from_ms:
Loads MeasurementSet (MS) data into one or more Visibilities.

Used in ContinuumImagingPipeline._load_bvis_from_ms

5

_https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels/-/blob/main/src/ska_sdp_datamodels/visibility/vis_model.py#L23
https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html
https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels/-/blob/main/src/ska_sdp_datamodels/image/image_model.py#L26
https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels/-/blob/main/src/ska_sdp_datamodels/sky_model/sky_model.py#L117
https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels/-/blob/main/src/ska_sdp_datamodels/sky_model/sky_model.py#L12
https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/rascil/processing_components/visibility/base.py#L354

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

User-controlled arguments:

– msname: name and path to MeasurementSet

– channels_in_data: how many frequency channels does the used data descriptor contain

– nchan_per_vis: how many channels we want to load into a Visibility;

Hard-coded arguments:

– selected_dds: which data descriptor to load from the MS; hard coded to [0]

– average_channels: whether or not to average the channels loaded into a Visiblity; hard coded to
False

• convert_visibility_to_stokesI:
Convert the BlockVisibility data to StokesI.

Used in ContinuumImagingPipeline._load_bvis_from_ms

• advise_wide_field:

Used in ContinuumImagingPipeline._init_model_images_list TODO

• create_image_from_visibility:
Used to create the initial model image used for the SkyModel and as a model for the final FITS images.
This function takes a lot of arguments in the form of kwargs, from which we hard-code nchan, the number
of channels the output image should have. This is set to 1, because deconvolution (as is in RASCIL) needs
images of a single channel.

Used in ContinuumImagingPipeline._init_model_images_list

User-controlled arguments:

– npixel: how many pixels (on each side) we want our final images to contain;

– cellsize: how big we want a cell to be in radians; default is calculated in function if not provided,
defaults to being calculated.

Hard-coded arguments:

The function loads multiple arguments from kwargs if present, else it uses some defaults.

• invert_visibility:
Invert a Visibility to make an (image, sum of weights) tuple.

Used in ContinuumImagingPipeline._init_psf_list and ContinuumImagingPipeline.invert

User-controlled arguments:

– context: which imaging context, i.e. gridder/degridder to use

Hard-coded arguments:

invert_visibility takes various arguments, some if which maybe worth investigating and
promoting to user-controlled ones

• extract_direction_and_flux:
This function formats the data needed for the various DFT kernels / functions to run. It is wrapped with
dft_visibility, which also allows for choosing between RASCIL’s dft_kernel function or the Processing
Function Library’s dft_point_v00 function.

• dft_kernel:
Choose and run a CPU or a GPU-based DFT kernel via RASCIL. It takes dft_compute_kernel argument
to specify which kernel to use. It is wrapped with dft_visibility

Hard-coded arguments:

6 Chapter 2. Components used from RASCIL

https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/visibility/operations.py#L334
https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/imaging/base.py#L441
https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/imaging/base.py#L299
https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/imaging/imaging.py#L58
https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/imaging/dft.py#L60
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/processing_function_integration.py#L19
https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/imaging/dft.py#L122
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/processing_function_integration.py#L19

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

– dft_compute_kernel: determines which kernel to use; default is None, which reverts to
cpu_looped

• predict_visibility:
Predict Visibility from an Image.

Used in ContinuumImagingPipeline.predict

User-controlled arguments:

– context: which imaging context, i.e. gridder/degridder to use

Hard-coded arguments:

predict_visibility takes various arguments, some if which maybe worth investigating and
promoting to user-controlled ones

• imaging_subtract_vis:
Implemented directly in imaging_utils.py, but it is a copy of an inner function of RASCIL’s sub-
tract_list_rsexecute_workflow. It subtracts the model data from the input visibility data.

Used in ContinuumImagingPipeline.predict

• deconvolve_skymodel_list_rsexecute_workflow:
A high level function, called a ‘workflow’ in RASCIL. It controls the full process of deconvolution. A
detailed breakdown and analysis of RASCIL’s deconvolution can be found in Confluence: Deconvolution
- detailed breakdown in RASCIL CIP

This is wrapped with the deconvolution function, which also hard-codes some of the input arguments.

deconvolution is used in ContinuumImagingPipeline.deconvolve

User-controlled arguments:

– fit_skymodel: whether to fit for the SkyComponents and update the SkyModel with the component
list

– component_threshold: sources with absolute flux > this level (Jy) are fitted and added to the Sky-
Component lis; only used if fit_skymodel == True

– clean_threshold: clean stopping threshold (Jy/beam); this translates to the threshold argument
of the RASCIL workflow function.

Hard-coded arguments:

– component_method: what method to use for extracting SkyComponents; hard-coded to fit

– deconvolve_facets: how many facets to break the image up before deconvolution; hard-
coded to 1

deconvolve_skymodel_list_rsexecute_workflow takes many more arguments in the form
of kwargs. These will need investigating and potentially promoted to user-controlled arguments.

• restore_skymodel_list_rsexecute_workflow:
High-level RASCIL workflow controlling the functionality of restoring the image. It takes various key-word
arguments, none of which are controlled by the user at the moment. See function for a full list.

Used in ContinuumImagingPipeline.restore

• export_skymodel_to_hdf5:
Export a SkyModel or a list of it into HDF5 format. Used in export_results.

• image_gather_channels:
Concatenates the Image objects along the frequency dimension. At the beginning, we created a model

2.2. Control functions and processing components 7

https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/imaging/imaging.py#L28
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_utils.py#L23
https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/rascil/workflows/rsexecute/imaging/imaging_rsexecute.py#L867
https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/rascil/workflows/rsexecute/imaging/imaging_rsexecute.py#L867
https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/rascil/workflows/rsexecute/skymodel/skymodel_rsexecute.py#L348
https://confluence.skatelescope.org/display/SE/Deconvolution+-+detailed+breakdown+in+RASCIL+CIP
https://confluence.skatelescope.org/display/SE/Deconvolution+-+detailed+breakdown+in+RASCIL+CIP
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/processing_function_integration.py#L73
https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/rascil/workflows/rsexecute/skymodel/skymodel_rsexecute.py#L173
https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels/-/blob/main/src/ska_sdp_datamodels/sky_model/sky_functions.py#L129
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_utils.py#L41
https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python/-/blob/main/src/ska_sdp_func_python/image/gather_scatter.py#L188

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

image per frequency channel; these are now merged into a single image to be exported into FITS files Used
in export_results.

8 Chapter 2. Components used from RASCIL

https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_utils.py#L41

CHAPTER

THREE

PROCESSING FUNCTION LIBRARY INTEGRATION

3.1 Integration steps

TBC after Workshop with teams.

3.2 DFT

We have integrated the DFT (direct Fourier Transform) function. The logic to choose between this and the RASCIL
version can be found in dft_visibility. One needs to specify the dft_function argument to determine which to use:

• rascil: to use the RASCIL version

• proc_func: to use the Processing Function Library version

Relevant unit tests have been added to test_processing_function_integration.py. These show that, using basic visibility
data, the two versions produce the same results.

3.3 Future work

As new functions are added to the Processing Function Library, one can start integrating those with the pipeline. We
encourage the writers of these functions to give it a go at the integration and test their code using the prototype pipeline.

9

https://gitlab.com/ska-telescope/sdp/ska-sdp-func/-/blob/main/src/ska_sdp_func/dft.py#L5
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/processing_function_integration.py#L19
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/tests/test_processing_function_integration.py#L15

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

10 Chapter 3. Processing Function Library integration

CHAPTER

FOUR

RUNNING THE PROTOTYPE PIPELINE WITH DASK

Parallel run of the prototype imaging pipeline has been implemented using Dask.

Most of the functions are wrapped using a simple decorator, which decides whether to compute using dask.delayed or
run the code in serial. This is controlled by the use_dask user-defined argument (see Command Line Interface to run
the pipeline).

A few of the high-level functions directly imported from RASCIL use RASCIL’s own class that wraps its ob-
jects with Dask. These are the so called “workflows”, e.g. deconvolve_skymodel_list_rsexecute_workflow and re-
store_skymodel_list_rsexecute_workflow. They inherently use the rsexecute class, which we need to initialize in the
main function of imaging_prototype.py.

11

https://www.dask.org/
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/dask_utils.py#L15
https://docs.dask.org/en/stable/delayed.html
https://gitlab.com/ska-telescope/external/rascil/-/blob/master/rascil/workflows/rsexecute/skymodel/skymodel_rsexecute.py#L349
https://gitlab.com/ska-telescope/external/rascil/-/blob/master/rascil/workflows/rsexecute/skymodel/skymodel_rsexecute.py#L174
https://gitlab.com/ska-telescope/external/rascil/-/blob/master/rascil/workflows/rsexecute/skymodel/skymodel_rsexecute.py#L174
https://gitlab.com/ska-telescope/external/rascil/-/blob/master/rascil/workflows/rsexecute/execution_support/rsexecute.py#L557
https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_prototype.py

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

12 Chapter 4. Running the prototype pipeline with Dask

CHAPTER

FIVE

COMMAND LINE INTERFACE TO RUN THE PIPELINE

The main function of the pipeline can be found in imaging_prototype.py.

Prototype imaging pipeline

usage: imaging_prototype.py [-h] --input_ms INPUT_MS [--output_dir OUTPUT_DIR]
--input_nchan INPUT_NCHAN
[--nchan_per_vis NCHAN_PER_VIS]
[--n_major N_MAJOR]
[--imaging_context IMAGING_CONTEXT]
[--imaging_npixel IMAGING_NPIXEL]
[--imaging_cellsize IMAGING_CELLSIZE]
[--component_threshold COMPONENT_THRESHOLD]
[--clean_threshold CLEAN_THRESHOLD]
[--processing_func PROCESSING_FUNC]
[--use_dask USE_DASK]

5.1 Named Arguments

--input_ms MeasurementSet to be read (including path to directory)

--output_dir Directory where output files should go.Default is the one where program is exe-
cuted from.

Default: “.”

--input_nchan Number of channels in a single data descriptor in the MS.Note: we don’t allow
specifying a list of data descriptor,instead we always load [0] from the MS.

--nchan_per_vis How many channels per Visibility to read in

Default: 1

--n_major How many major cycles to run

Default: 1

--imaging_context What gridding context to use: ng (nifty-gridder) | 2d | awprojection | wg (WAGG
for GPU only)

Default: “ng”

--imaging_npixel Number of pixels in ra, dec: Should be a composite of 2, 3, 5

Default: 512

13

https://gitlab.com/ska-telescope/sdp/ska-sdp-prot-imaging-pipeline/-/blob/main/src/imaging_prototype.py

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

--imaging_cellsize Cellsize (radians). Default is to calculate.

--component_threshold Sources with absolute flux > this level (Jy) are fitted using SkyComponents

Default: 1.0

--clean_threshold Clean stopping threshold (Jy/beam), note that this is different from compo-
nent_threshold

Default: 1.0

--processing_func Which processing functions to use: ‘rascil’: RASCIL-based processing compo-
nents’proc_func’: accelerated functions from the Processing Function Library

Default: “rascil”

--use_dask Whether to run the computation with Dask.delayed or not

Default: “False”

14 Chapter 5. Command Line Interface to run the pipeline

CHAPTER

SIX

CONTINUUM IMAGING PIPELINE PYTHON CLASS

class src.imaging_prototype.ContinuumImagingPipeline(imaging_context, use_dask=False)
Prototype Continuum Imaging Pipeline. Doesn’t use calibration.

_init_model_images_list(n_pixel, cell_size=None)
Initialize model images from input visibility data

Note: According to RASCIL Continuum Imaging Pipeline,
each model image needs to have a single frequency channel. This will make sure that when we run
invert with ng, the resulting Image list will have a channel each and, hence deconvolution won’t break
(which expects 1 chan / Image).

Parameters

• cell_size – image cell size [rad]; if None, it is calculated

• n_pixel – number of pixels on a side of the image

_init_psf_list()

Create Point Spread Functions (PSF)

_init_skymodel_list()

Initialize SkyModel for each model image (Note: we may need to allow it as input too, in the future)

_load_bvis_from_ms(input_ms, channels_in_data, nchan_per_vis)
Load MeasurementSet data into Visibility objects. (rascil.data_models.memory_data_models.Visibility)

Note: - Polarization of data is always converted to Stokes I after loading. - Based on ras-
cil.apps.rascil_imager.get_vis_list and

rascil.workflows.rsexecute.visibility.visibility_rsexecute.create_visibility_from_ms_rsexecute

• these RASCIL functions take multiple arguments, most of which we hardcode here. However, in the
future, we may need to allow for users to specify these.

Parameters

• input_ms – path to input MeasurementSet

• channels_in_data – how many frequency channels does the data set contain

• nchan_per_vis – how many frequency channels to load into a single Visibility

15

ska-sdp-prot-imaging-pipeline Documentation, Release 0.1.0-beta

deconvolve(fit_skymodel, component_threshold, clean_threshold)
Run deconvolution.

Parameters

• fit_skymodel – True: fit the skymodel and extract sky components False: run CLEAN-
based deconvolution

• component_threshold – Sources with absolute flux > this level (Jy) are fitted

• clean_threshold – Clean stopping threshold (Jy/beam)

Returns
updates self.skymodel_list in place

invert()

Run the invert step.

Returns
updates self.dirty_image_list in place

predict(processing_func_source)
Run the predict step, including subtracting the predicted model data from the input data.

Parameters
processing_func_source – which type of processing functions to use; Options: ‘rascil’ -
use RASCIL

’proc_func’ - Use the Processing Function Library

Returns
updates self.bvis_list in place

restore()

Restore images.

Uses RASCIL’s restore_skymodel_pipeline_rsexecute_workflow function, which implicitly uses rsexecute
to run with Dask.

16 Chapter 6. Continuum Imaging Pipeline python class

INDEX

Symbols
_init_model_images_list()

(src.imaging_prototype.ContinuumImagingPipeline
method), 15

_init_psf_list() (src.imaging_prototype.ContinuumImagingPipeline
method), 15

_init_skymodel_list()
(src.imaging_prototype.ContinuumImagingPipeline
method), 15

_load_bvis_from_ms()
(src.imaging_prototype.ContinuumImagingPipeline
method), 15

C
ContinuumImagingPipeline (class in

src.imaging_prototype), 15

D
deconvolve() (src.imaging_prototype.ContinuumImagingPipeline

method), 15

I
invert() (src.imaging_prototype.ContinuumImagingPipeline

method), 16

P
predict() (src.imaging_prototype.ContinuumImagingPipeline

method), 16

R
restore() (src.imaging_prototype.ContinuumImagingPipeline

method), 16

17

	Structure of the pipeline
	Components used from RASCIL
	Data models
	Control functions and processing components

	Processing Function Library integration
	Integration steps
	DFT
	Future work

	Running the prototype pipeline with Dask
	Command Line Interface to run the pipeline
	Named Arguments

	Continuum Imaging Pipeline python class
	Index

