

SDP Processing Controller

The processing controller (PC) is the SDP service responsible for the
controlling the execution of processing blocks (PBs).

	Processing Controller

Indices and tables

	Index

	Module Index

Processing Controller

The processing controller (PC) is the SDP service responsible for
controlling the execution of processing blocks (PBs).

Each execution block (EB) that SDP is configured to execute contains a number
of PBs, either real-time or batch. The real-time PBs run simultaneously for the
duration of the EB. Batch PBs run after the EB is finished, and they may have
dependencies on other PBs, both real-time and batch.

The SDP architecture requires the PC to use a model of the available resources
to determine if a PB can be executed. This has not been implemented yet, so
real-time PBs are always executed immediately, and batch processing ones when
their dependencies are finished.

Processing block and its state

A PB and its state are located at the following paths in the configuration
database:

/pb/[pb_id]
/pb/[pb_id]/state

The PB is created by the subarray Tango device when starting an EB. Once it is
created it does not change. The state is created by the PC when deploying the
processing script, and it is subsequently updated by the PC and the script.

The entries in the PB state relevant to the PC are status and
resources_available, for example:

{
 "status": "WAITING",
 "resources_available": false
}

status is a string indicating the status of the script. Possible values
are:

	STARTING: set by the PC when it deploys the script, hereafter the
script is responsible for setting status

	WAITING: script has started, but is waiting for resources to be
available to execute its processing

	RUNNING: script is executing its processing

	FINISHED: script has finished its processing

	FAILED: set by the PC if it fails to deploy the script, or by the
script in the case of a non-recoverable error

resources_available is a boolean set by the PC to inform the script whether
it has the resources available to start its processing. Although the resource
model is not implemented yet, this is used to control when batch PBs with
dependencies start.

Behaviour

The behaviour of the PC is summarised as follows:

	If a PB is new, the PC will create the processing script deployment for it.
A PB is deemed to be new if the PB state does not exist. The PC reads the
script definition from the configuration DB to discover which OCI container
image to deploy. It creates the state and sets status to STARTING and
resources_available to false. If the script definition is not found in
the configuration DB, the PC still creates the state, but sets status to
FAILED.

	If a PB’s dependencies are all FINISHED, the PC sets resources_available
to true to allow it to start executing. Real-time PBs do not have
dependencies, so they start executing immediately.

	The PC removes processing deployments (scripts and execution engines) not
associated with any existing PB. This is used to clean up if a PB is deleted
from the configuration DB.

	Clean up the Configuration Database:

	Delete PBs that are FINISHED and do not have any
associated execution blocks. If there is an associated EB,
check if that exists, and if it doesn’t, delete the PB.

	Delete EBs without any associated PBs. If there are associated
PBs, check if they exist, and if they don’t, delete the EB.

	Iterate through EBs with PBs. If the EB status is FINISHED,
Check if all of the associated PBs are also FINISHED and
have been in the database in a finished state for at least an
hour. If these conditions apply, delete all of the PBs and the EB.
If there is at least one PB that cannot be deleted, do not delete
any of the other PBs or the EB, and wait until all can be deleted
together.

Implementation

The above explained behaviour of the PC is implemented using the Configuration Library’s
Config().watcher() [https://developer.skatelescope.org/projects/ska-sdp-config/en/latest/api.html]
method. For more information on watchers take a look at the
Watchers [https://developer.skatelescope.org/projects/ska-sdp-config/en/latest/design.html]
section of the Configuration Library documentation.

Index

 nav.xhtml

 Table of Contents

 		
 SDP Processing Controller

 		
 Processing Controller

 		
 Processing block and its state

 		
 Behaviour

 		
 Implementation

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/plus.png

_static/file.png

_static/minus.png

