

Readme

	Add Derived Data to Measurement Sets
	Requirements

	Install a Virtual Environment

	Install the Package

	Running the Tests

	Adding Tests

	Code analysis

	Writing documentation

	Development

MSADD - Measurement Set Add Derived Data

These are all the packages, functions and scripts that form part of the project.

	MSADD - Measurement Set Add Derived Data

Add Derived Data to Measurement Sets

[image: _images/7ac8f36462f66079ef3863ba060cc42d7c7b279d.svg]Documentation Status [https://developer.skao.int/projects/ska-sdp-ms-add-derived-data/en/latest/?badge=latest]

Simple package to both calculate derived data and amend measurement sets
with other data. In general the input format can be another measurement set
or a JSON formatted file.

Requirements

The system used for development needs to have Python 3 and pip installed.
Also, the CASA Measures package needs to be up-to-date. This can be pulled from
Westerbork Radio Telescope by the following steps:

> cd /var/lib/casacore/data
> cd wget ftp://ftp.astron.nl/outgoing/Measures/WSRT_Measures.ztar
> cd mv WSRT_Measures.ztar WSRT_Measures.tar.gz
> cd gunzip WSRT_Measures.tar.gz
> cd tar -xvf WSRT_Measures.tar

Install a Virtual Environment

Always use a virtual environment. Pipenv [https://pipenv.readthedocs.io/en/latest/] is now Python’s officially
recommended method, but we are not using it for installing requirements when building on the CI Pipeline. You are encouraged to use your preferred environment isolation (i.e. pip, conda or pipenv while developing locally).

For working with Pipenv, follow these steps at the project root:

First, ensure that ~/.local/bin is in your PATH with:

> echo $PATH

In case ~/.local/bin is not part of your PATH variable, under Linux add it with:

> export PATH=~/.local/bin:$PATH

or the equivalent in your particular OS.

Then proceed to install pipenv and the required environment packages:

> pip install pipenv # if you don't have pipenv already installed on your system
> pipenv install
> pipenv shell

You will now be inside a pipenv shell with your virtual environment ready.

Use exit to exit the pipenv environment.

Install the Package

The package can be installed from a local checkout of this repository by:

> python3 -m pip install --extra-index-url==https://artefact.skao.int/repository/pypi-internal/simple -e .

Or directly from the artefact repository by

> python3 -m pip install --extra-index-url==https://artefact.skao.int/repository/pypi-internal/simple ska-sdp-msadd

Running the Tests

The current test suite can be ran by

> make test

Adding Tests

	Put tests into the tests folder

	Use PyTest [https://pytest.org] as the testing framework

	Reference: PyTest introduction [http://pythontesting.net/framework/pytest/pytest-introduction/]

	Run tests with python setup.py test

	Configure PyTest in setup.py and setup.cfg

	Running the test creates the htmlcov folder

	Inside this folder a rundown of the issues found will be accessible using the index.html file

	All the tests should pass before merging the code

Code analysis

	Use Pylint [https://www.pylint.org] as the code analysis framework

	By default it uses the PEP8 style guide [https://www.python.org/dev/peps/pep-0008/]

	Use the provided code-analysis.sh script in order to run the code analysis in the module and tests

	Code analysis should be run by calling pylint ska_python_skeleton. All pertaining options reside under the .pylintrc file.

	Code analysis should only raise document related warnings (i.e. #FIXME comments) before merging the code

Writing documentation

	The documentation generator for this project is derived from SKA’s SKA Developer Portal repository [https://github.com/ska-telescope/developer.skatelescope.org]

	The documentation can be edited under ./docs/src

	If you want to include only your README.md file, create a symbolic link inside the ./docs/src directory if the existing one does not work:

$ cd docs/src
$ ln -s ../../README.md README.md

	In order to build the documentation for this specific project, execute the following under ./docs:

$ make html

	The documentation can then be consulted by opening the file ./docs/build/html/index.html

Development

PyCharm

As this project uses a src folder structure [https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure],
under Preferences > Project Structure, the src folder needs to be marked as “Sources”. That will
allow the interpreter to be aware of the package from folders like tests that are outside of src.
When adding Run/Debug configurations, make sure “Add content roots to PYTHONPATH” and
“Add source roots to PYTHONPATH” are checked.

Todo

	add the antenna table to the measurement set

	perhaps add arbitrary measurement set tables based on the contents of a JSON file

	add the information about the JSON table format

MSADD - Measurement Set Add Derived Data

Simple tool to add derived products to existing measurement sets. Basic functionality is
to add UVW in a catalog frame to a measurement set - based on the DELAY_DIR direction and the
antenna positions. But it is envisioned that other tables will be added.

UVW Calculation and Addition

The scheme to perform this is based upon the CASACORE package and utilises the python-casacore wrappers
to the measures functionality of those classes. There are other member functions of this package that
do not utilise this functionality.
.. Automatic API Documentation section. Generating the API from the docstrings. Modify / change the directory structure as you like

The Applications

msadd-uvw

The first application developed with this package is msadd-uvw it can be run from the command line. Options can be
examined by msadd-uvw -h

Essentially this takes a direction, a set of antenna positions and updates an output measurement set with the UVW calculated
by the utilities in the package.

The following options are supported:

	-i, --input: MSv2 input model file used for reference antenna positions, the locations option should really be used. (default: None)

	-o, --output: Output MSv2 - this is the table which needs updating. (default: None)

	-l, --locations : JSON input antenna-locations file - this can be a local location or a URL (default: None)

	-d, --delay: Delay Centre Over-ride – You should set this. Otherwise the tools will inspect the output measurement set for the FIELD table. The units are (hour, degree). The format is anything an Astropy SkyCoord will take so "00 42 30 +41 12 00” or "00:42.5 +41:12” are fine

	f, --frame: Reference frame for the delay direction (ICRS)

	s, --swap: Default order of baseline calculation is Antenna2 - Antenna1 - you can swap this if you want.

The Module Contents

The Antenna Table

A simple set of classes and functions to read and construct an antenna
table in memory from either a reference measurement set of a JSON file.
THe JSON file can be stored remotely and accessed via URL

	
class ska.sdp.msadd.antenna.AntennaTable(input_table_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, json_file_location=None)

	simple class that updates the antenna table using either a JSON object or another table from a reference MS
The same class can deal with multiple reference options - in order of preference:
It first checks if local MS reference table is given.
Then it checks whether a remote file location is given.
Finally it checks for a local json file.

	
get_antenna_pos(index)

	Returns the XYZ antenna position as held in the internal representation of the antenna table

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – The antenna index as listed in the relevant row of the MAIN table

	Return position

	The XYZ position geocentric of the antenna

	Return type

	[x, y, z]

	
load_table_from_json(data)

	Create an internal array of antenna dictionaries using the JSON format as input

	Parameters

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary structure as generated by json.loads - the assumption is that this remains in order

	
load_table_from_ms(input_table_name)

	If the input table name exists - set the input table load the values into a dictionary

	Parameters

	input_table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The actual ANTENNA table in a measurement set

The UVW Table

These methods are used to calculate UVW based upon the contents of a telescope
model (antenna locations, Time, look direction). The contents of which are
obtained from the AntennaTable and a reference measurement set.

	
class ska.sdp.msadd.uvw.UpdateUvwColumn(input_table_name=None, json_file_location=None, output_table_name=None, swap_baselines=False, delay_ra: typing.Optional[<MagicMock id='140586478060304'>] = None, delay_dec: typing.Optional[<MagicMock id='140586478060304'>] = None)

	A simple class that updates the UVW column in the main table - derived from ANTENNA locations in the ANTENNA table

	
calculate_uvw_for_row(row)

	Calculate the UVW for the row of internal representation of the table. Note this does not update the row in the
measurement set. The geocentric UVW of each antenna is calculated separately using its position - this is
probably better than doing it to some reference position.

	Parameters

	row (int [https://docs.python.org/3/library/functions.html#int]) – The row to calculate

	Return uvw

	The UVW in J2000 epoch

	Return type

	[u,v,w]

	
get_antenna1_from_row(row)

	Get the antenna index of antenna 1 for the given row

	Parameters

	row (int [https://docs.python.org/3/library/functions.html#int]) – row index

	
get_antenna2_from_row(row)

	Get the antenna index of antenna 2 for the given row

	Parameters

	row (int [https://docs.python.org/3/library/functions.html#int]) – row index

	
get_antenna_position_from_index(index)

	Get the antenna position from the internal representation of the antenna table

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – index

	
get_delay_dir_from_table(row=0)

	Pull the delay direction from the reference measurement set

	Parameters

	row (int [https://docs.python.org/3/library/functions.html#int]) – row to take it from (0)

	Returns

	a list of form [ra,dec] in radian measure

	Return type

	[target_ra, target_dec]

	
get_time_from_row(row)

	Get the time from the internal representation of the main table row

	Parameters

	row (int [https://docs.python.org/3/library/functions.html#int]) – row index

	Return time

	

	Return type

	astropy.Time

	
load_columns_from_ms(reference_table_name)

	If the input table name exists - set the input table load the values into a dictionary

	
load_from_output_table()

	If the input table name exists - set the input table

	
update_uvw_for_all_rows()

	Calculate the UVW for the all the rows of internal representation of the table. This does update the measurement
set on disk

The Calculation Utilities

The actual work in calculating the UVW is performed by these functions. There are some utilities that perform these
tasks from first principles and others that use casacore measures - as accessed via the python wrappers

	
ska.sdp.msadd.utils.get_antenna_uvw(xyposA: <MagicMock id='140586478292112'>, epoch: <MagicMock id='140586477842320'>, ra: <MagicMock id='140586477841872'>, decl: <MagicMock id='140586477841872'>, position_frame='itrf', epoch_frame='J2000', swap_baselines=False) → <MagicMock id='140586478182288'>

	Return the geocentric uvw vector for the the given position at the given epoch.

Note: This actually just calls get_uvw_J2000 with the geocentre as the other antenna and this antenna as the reference
position.

Note: This is the per antenna calculation that you probably want

	Parameters

	
	xyposA (list [https://docs.python.org/3/library/stdtypes.html#list]) – position of the antenna (vector geocentric XYZ in m)

	epoch (astropy.Time) – Time for which to calculate the UVW

	epoch_frame (str [https://docs.python.org/3/library/stdtypes.html#str]) – Whether you want a catalog (J2000) frome or epoch of date (default: ‘J2000’)

	position_frame (str [https://docs.python.org/3/library/stdtypes.html#str]) – The frame of the input positions
(generally WGS84 or ITRF) we are using casacore for
this and these are the two frames supported

	ra (astropy.Angle) – Right Ascension (J2000)

	decl (astropy.Angle) – Declination (J2000)

	swap_baselines (Bool) – (xyposB - xyposA) is assumed - if the reverse is required set this to True

	Returns

	The geocentric UVW baseline

	Return type

	numpy.array [u,v,w]

	
ska.sdp.msadd.utils.get_r(h, delta) → <MagicMock id='140586478571152'>

	Return the matrix that will project XYZ into UVW. This is the matrix that is typically used to get the
transformation from a geocentric position to a UVW at the epoch of date.
See A.R. Thompson, J.M. Moran, and G.W. Swenson Jr.,
Interferometry and Synthesis in Radio Astronomy (equation 4.3 in the Third Edition)

	Parameters

	
	h (double) – – the Greenwich hour angle in radian

	delta (double) – – the declination in radian

	Returns

	A numpy array of the matrix R

	Return type

	numpy.array

	
ska.sdp.msadd.utils.get_uvw(xyposA: list, xyposB: list, epoch: <MagicMock id='140586477842320'>, ra: <MagicMock id='140586477841872'>, decl: <MagicMock id='140586477841872'>, swap_baselines=False) → <MagicMock id='140586478548816'>

	Return the baseline vector for the 2 given positions in epoch of date

	Parameters

	
	xyposA (list [https://docs.python.org/3/library/stdtypes.html#list]) – position of antenna 1 (vector geocentric XYZ in m)

	xyposB (list [https://docs.python.org/3/library/stdtypes.html#list]) – position of antenna 2 (vector geocentric XYZ in m)

	epoch (astropy.Time) – Time for which to calculate the UVW

	ra (astropy.Angle) – Right Ascension (J2000)

	decl (astropy.Angle) – Declination (J2000)

	swap_baselines (Bool) – (xyposB - xyposA) is assumed - if the reverse is required set this to True

	Returns

	The uvw baseline at Epoch of Date

	Return type

	numpy.array

	
ska.sdp.msadd.utils.get_uvw_J2000(xyposA: <MagicMock id='140586478525520'>, xyposB: <MagicMock id='140586589022032'>, refpos: <MagicMock id='140586478308624'>, epoch: <MagicMock id='140586477842320'>, ra: <MagicMock id='140586477841872'>, decl: <MagicMock id='140586477841872'>, position_frame='itrf', swap_baselines=False) → <MagicMock id='140586478270864'>

	Return the baseline vector for the 2 given positions at the J2000 Epoch. This ensures that any
image formed by the Fourier transform of a UVW cube in this frame will itself be in the ICRS frame.

Note: I believe that the ICRS and J2000 are aligned <at> J2000 - but caveat emptor until I’ve sorted that out.

Note: This assumes you have a reference position at which all the sidereal angles are calculated but it is more likely
that you want a “per antenna” calculation. So be sure you want this before you use it.

	Parameters

	
	xyposA (list [https://docs.python.org/3/library/stdtypes.html#list]) – position of antenna 1 (vector geocentric XYZ in m)

	xyposB (list [https://docs.python.org/3/library/stdtypes.html#list]) – position of antenna 2 (vector geocentric XYZ in m)

	epoch (astropy.Time) – Time for which to calculate the UVW

	ra (astropy.Angle) – Right Ascension (J2000)

	decl (astropy.Angle) – Declination (J2000)

	position_frame (str [https://docs.python.org/3/library/stdtypes.html#str]) – The frame of reference for the positions ITRF is default - WGS84 is also supported

	swap_baselines (Bool) – (xyposB - xyposA) is assumed - if the reverse is required set this to True

	Returns

	The uvw baseline at J2000

	Return type

	numpy.array [u,v,w]

	
ska.sdp.msadd.utils.time_to_quantity(in_time)

	I have found that for some reason I get either a string or a byte array as returned isot format from astropy.time
There seems to be no reason to it - but it does seem to be a function of the value. Some dates are always byte arrays
and some are always strings - this helper function just tests what it going on tries to return a valid casacore.quanta

	Parameters

	in_time (astropy.Time) – astropy Time object

	Returns

	a casacore.quantity of the same value

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 ska	

 	
 	
 ska.sdp.msadd.utils	

Index

 A
 | C
 | G
 | L
 | M
 | S
 | T
 | U

A

 	
 	AntennaTable (class in ska.sdp.msadd.antenna)

C

 	
 	calculate_uvw_for_row() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

G

 	
 	get_antenna1_from_row() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	get_antenna2_from_row() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	get_antenna_pos() (ska.sdp.msadd.antenna.AntennaTable method)

 	get_antenna_position_from_index() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	get_antenna_uvw() (in module ska.sdp.msadd.utils)

 	
 	get_delay_dir_from_table() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	get_r() (in module ska.sdp.msadd.utils)

 	get_time_from_row() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	get_uvw() (in module ska.sdp.msadd.utils)

 	get_uvw_J2000() (in module ska.sdp.msadd.utils)

L

 	
 	load_columns_from_ms() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	load_from_output_table() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	
 	load_table_from_json() (ska.sdp.msadd.antenna.AntennaTable method)

 	load_table_from_ms() (ska.sdp.msadd.antenna.AntennaTable method)

M

 	
 	
 module

 	ska.sdp.msadd.utils

S

 	
 	
 ska.sdp.msadd.utils

 	module

T

 	
 	time_to_quantity() (in module ska.sdp.msadd.utils)

U

 	
 	update_uvw_for_all_rows() (ska.sdp.msadd.uvw.UpdateUvwColumn method)

 	
 	UpdateUvwColumn (class in ska.sdp.msadd.uvw)

 nav.xhtml

 Table of Contents

 		
 MSADD - Measurement Set Add Derived Data

 		
 Add Derived Data to Measurement Sets

 		
 Requirements

 		
 Install a Virtual Environment

 		
 Install the Package

 		
 Running the Tests

 		
 Adding Tests

 		
 Code analysis

 		
 Writing documentation

 		
 Development

 		
 PyCharm

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/file.png

_static/minus.png

_static/plus.png

