

SDP Configuration Library

This repository contains the library for accessing SKA SDP configuration
information. It provides ways for SDP controller and processing components to
discover and manipulate the intended state of the system.

At the moment this is implemented on top of etcd, a highly-available
database. This library provides primitives for atomic queries and updates to
the stored configuration information.

	Installation and Usage

	Design and Best Practices

	Configuration Schema

	Configuration API

	SDP command-line interface

Indices and tables

	Index

	Module Index

Installation and Usage

Install with pip

pip install ska-sdp-config --extra-index-url https://artefact.skao.int/repository/pypi-internal/simple

Basic usage

Make sure you have a database backend accessible (etcd3 is supported at the
moment). Location can be configured using the SDP_CONFIG_HOST and
SDP_CONFIG_PORT environment variables. The defaults are 127.0.0.1 and
2379, which should work with a local etcd started without any
configuration.

You can find etcd pre-built binaries, for Linux, Windows, and macOS,
here: https://github.com/etcd-io/etcd/releases.

You can also use homebrew to install etcd on macOS:

brew install etcd

If you encounter issues follow: https://brewinstall.org/install-etcd-on-mac-with-brew/

This should give you access to SDP configuration information, for instance try:

import ska_sdp_config

config = ska_sdp_config.Config()

for txn in config.txn():
 for pb_id in txn.list_processing_blocks():
 pb = txn.get_processing_block(pb_id)
 print("{} ({}:{})".format(pb_id, pb.script['name'], pb.script['version']))

To read a list of currently active processing blocks with their associated
scripts.

Command line

This package also comes with a command line utility for easy access to
configuration data. For instance run:

SDP command-line interface

Running unit tests locally

You will need to have a database backend to run the tests as well.
See “Basic usage” above for instructions on how to install an etcd backend on your machine.

Once you started the database (run etcd in the command line),
you will be able to run the tests using pytest.

Alternative way is by using the two shell scripts in the scripts directory:

docker_run_etcd.sh -> Which runs etcd in a Docker container for testing the code.
docker_run_python.sh -> Runs a python container and connects to the etcd instance.

Run the scripts from the root of the repository:

bash scripts/docker_run_etcd.sh
bash scripts/docker_run_python.sh

Once the container is started and mounted to the local directory.

Since the dependencies are managed by poetry, either run a poetry install,
or pip install the repository (from the root):

pip install -e .

Then run the tests:

pytest tests/

Design and Best Practices

Quick points:

	Uses a key-value store

	Objects are represented as JSON

	Uses watchers on a key or range of keys to monitor for any updates

Transaction Basics

The SDP configuration database interface is built around the concept
of transactions, i.e. blocks of read and write queries to the database
state that are guaranteed to be executed atomically. For example,
consider this code:

for txn in config.txn():
 a = txn.get('a')
 if a is None:
 txn.create('a', '1')
 else:
 txn.update('a', str(int(a)+1))

It is guaranteed that we increment the ‘a’ key by exactly once here, no
matter how many other processes might be operating on it. How does this
work?

The way transactions are implemented follows the philosophy of
Software Transactional Memory [https://en.wikipedia.org/wiki/Software_transactional_memory] as
opposed to a lock-based implementation. The idea is that all reads are
performed, but all writes are actually delayed until the end of the
transaction. So in the above example, ‘a’ is actually read from the
database using ‘get’, but the writes performed by ‘create’
or ‘update’ do not happen immediately.

Once the transaction finishes (the end of the for loop),
‘commit’ sends a single request to the database that updates
all written values only if none of the values that were read have been
written in the meantime. If the commit fails, we repeat the
transaction (that’s why it is a loop!) until it succeeds. The
idea is that this is fairly rare, and repeating the transaction should
typically be cheap.

Usage Guidelines

What does this mean for everyday usage? Transactions should be as
self-contained as possible - i.e. they should explicitly contain all
assumptions about the database state they are making. If we wrote the
above transaction as follows:

for txn in config.txn():
 a = txn.get('a')

for txn in config.txn():
 if a is None:
 txn.create('a', '1')
 else:
 txn.update('a', str(int(a)+1))

A whole number of things could happen between the first and the second
transaction:

	The ‘a’ key could not exist in the first transaction, but could
have been created by the second (which would cause us to fail)

	The ‘a’ key could exist in the first transaction, but could have
been deleted by the second (which would also cause the above to fail)

	Another transaction might have updated the ‘a’ key with a new value
(which would cause that update to be lost)

A rule of thumb is that you should assume nothing about the
database state at the start of a transaction. If you rely on
something, you need to (re)query it after you enter it. If for some
reason you couldn’t merge the transactions above, you should write
something like:

for txn in config.txn():
 a = txn.get('a')

for txn in config.txn():
 assert txn.get('a') == a, "database state independently updated!"
 if a is None:
 txn.create('a', '1')
 else:
 txn.update('a', str(int(a)+1))

This would especially catch case (3) above. This sort of approach can
be useful when we want to make sub-transactions that only depend on a
part of the overall state:

for txn in config.txn():
 keys = txn.list_keys('/as/')
for key in keys:
 for txn in config.txn():
 a = txn.get(key)
 # Safety check: Path might have vanished in the meantime!
 if a is None:
 break
 # ... do something that depends solely on existence of "key" ...

This can especially be combined with watchers (see below) to keep
track of many objects without requiring huge transactions.

Wrapping transactions

The safest way to work with transactions is to make them as “large” as
possible, spanning all the way from getting inputs to writing
outputs. This should be the default unless we have a strong reason to
do it differently (examples for such reasons would be transactions
becoming too large, or transactions taking so long that they never
finish - but either should be extremely rare).

However, in the context of a program with complex behaviour this might
appear cumbersome: This means we have to pass the transaction object
to every single method that could either read or write the state. An
elegant way to get around this is to move such methods to a “model”
class that wraps the transaction itself:

def IncrementModel(Transaction):
 def __init__(self, txn):
 self._txn = txn
 def increase(key):
 a = self._txn.get(key)
 if a is None:
 self._txn.create(key, '1')
 else:
 self._txn.update(key, str(int(a)+1))

...
for txn in config.txn():
 model = IncrementModel(txn)
 model.increase('a')

In fact, we can provide factory functions that entirely hide the
transaction object from view:

def increment_txn(config):
 for txn in config.txn():
 yield IncrementModel(txn)

...
for model in increment_txn(config):
 model.increase('a')

We could wrap this model the same way again to build as many
abstraction layers as we want - key is that high-level methods such as
“increase” are now directly tied to the existence of a transaction object.

Dealing with roll-backs

Especially as we start wrapping transactions more and more, we must
keep in mind that while we can easily “roll back” any writes of the
transaction (as they are not actually performed immediately), the same
might not be true for program state. So for instance, the following
would be unsafe:

to_update = ['a','b','c']
for model in increment_txn():
 while to_update:
 model.increase(to_update.pop())

Clearly this transaction would work differently the second time
around! For this reason it is a good idea to keep in mind that while
we expect the for to only execute once, it is entirely possible that
they would execute multiple times, and the code should be written
accordingly.

Fortunately, this sort of occurrence should be relatively rare - the
following might be more typical:

objects_found = []
for model in increment_txn():
 for obj in model.list_objects():
 if model.some_check(obj):
 LOGGER.debug(f'Found {obj}!')
 objects_found.append(obj)

In this case, objects_found might contain duplicate objects if the
transaction repeats - which could be easily fixed by moving the
initialisation into the for loop.

On the other hand, note that transaction loops might also lead to
duplicated log lines here, which might be seen as confusing. In this
case, this is relatively benign and therefore likely acceptable. It
might be possible to generate log messages at the start and end of
transactions to make this more visible.

Another possible approach could be to replicate the transaction
behaviour: for example, we could make the logging calls to
IncrementModel, which would internally aggregate the logging lines to
generate, which increment_txn could then emit in one go once the
transaction actually goes through.

Watchers

Occasionally we might want to actively track something in the
configuration. For sake of example, let’s say we want to wait for a
key to appear so we can print it. A simple implementation using polling
might look like the following:

while True:
 for txn in config.txn():
 line = txn.get('/line_to_print')
 if line is not None:
 txn.delete('/line_to_print')
 if line is not None:
 print(line)
 time.sleep(1)

(Note that we are making sure to print outside the transaction loop -
otherwise lines might get printed multiple times if we were running
more than one instance of this program in parallel!)

But clearly this is not very good - it re-queries the database every
second, which adds database load and is pretty slow. Instead, we can
use a watcher loop:

for watcher in config.watcher():
 for txn in watcher.txn():
 line = txn.get('/line_to_print')
 if line is not None:
 txn.delete('/line_to_print')
 if line is not None:
 print(line)

Note that we are calling txn on the watcher instead of config:
What is happening here is that the watcher object collects keys read
by the transaction, and only iterates once one of them has been
written. It is a concept that has a lot in common with the transaction
loop, except that while the transaction loop only iterates if the
transaction is inconsistent, the watcher loop always iterates.

Note that you can have multiple separate transactions within a watcher
loop, which however are not guaranteed to be consistent. For example:

for watcher in config.watcher():
 for txn in watcher.txn():
 line = txn.get('/line_to_print')
 print('A:', line)
 for txn in watcher.txn():
 line = txn.get('/line_to_print')
 print('B:', line)

In this program we might get different results for A and
B. However, the watcher does guarantee that the loop will iterate
if any of the read values have been invalidated. So if the line was
deleted between the two transaction, the following output would be
generated:

A: something
B: None
A: None
B: None

After all, while transaction B had a current view of the situation
the first time around, the view of transaction A became out-of-date.

By default, the watcher only iterates if any values read by a
watcher transaction has changed. This may take an arbitrary amount
of time (including infinite amount), hence we can “force” the watcher
loop to go to its next iteration via two methods.
A default timeout can be set either upon initiation:

for watcher in etcd3.watcher(timeout=60):
 ...

or manually with the watcher.set_timeout(<new_timeout>) method.
The timeout is valid for the whole life-cycle of the watcher.
Alternatively, you can set a “wake-up call”, on a loop-by-loop basis,
using the watcher.set_wake_up_at(<value_of_alarm>) method.
This guarantees that the watcher will wake up at the given time or earlier
(specified as an absolute datetime object). This especially means that if the
method gets called multiple times, the watcher will wake up at the earliest
of the times specified, either by timeout or by any of the wake_up calls.

Etcd3 Backend Implementation

The backend uses the etcd3 client library, python-etcd3
<https://python-etcd3.readthedocs.io/en/latest/readme.html>.

In this implementaion, all watchers share a common grpc connection to the etcd
server for scalability. The values reported by the watchers are used to reconstruct
a consistent database state. Progress notifications from the server are used
to keep the watchers in sync and ensure that our view of the database state
is consistent.

All watched keys in the database are cached and any keys which are in a steady state
in each watcher iteration can skip the queue to the database. This is an
efficient approach for any processes that watch a lot of keys.

Previous Etcd3 Backend Implementation

The backend was re-implemented in August 2023 to replace the client library
etcd3-py with python-etcd3.

There were several issues with etcd3-py and workarounds and fixes had to
be put in place to ensure the SDP Configuration Library kept working.
As well as not being well maintained by its developers, etcd3-py uses a
http connection per watcher and does not support caching.

As of August 2023, the old backend is still present in the repository and has
been renamed to etcd3_revolution1. The new backend is set as the default.
In order to use the old backend change the relevant environment variable before
starting the etcd server.

To use the previous backend
export SDP_CONFIG_BACKEND="etcd3revolution1"

To use the current backend
export SDP_CONFIG_BACKEND="etcd3"

Or specify the desired backend:

import ska_sdp_config

config = ska_sdp_config.Config(backend="etcd3revolution1")

Configuration Schema

This is the schema of the configuration database, effectively the control plane
of the SDP.

Execution Block

Path /eb/[eb_id]

Dynamic state information of the execution block.

Contents:

{
 "eb_id": "eb-mvp01-20200425-00000",
 "max_length": 21600.0,
 "scan_types": [
 { "scan_type_id": "science", ... },
 { "scan_type_id": "calibration", ... }
],
 "pb_realtime": ["pb-mvp01-20200425-00000", ...],
 "pb_batch": [...],
 "pb_receive_addresses": "pb-mvp01-20200425-00000",
 "current_scan_type": "science",
 "status": "SCANNING",
 "scan_id": 12345,
 "last_updated": "2022-08-01 10:01:12"
}

When the execution block is being executed, the status field is set to the
observation state (obsState) of the subarray. When the execution block is
ended, status is set to FINISHED.

Processing Block

Path: /pb/[pb_id]

Static definition of processing block information.

Contents:

{
 "pb_id": "pb-mvp01-20200425-00000",
 "eb_id": "eb-mvp01-20200425-00000",
 "script": {
 "kind": "realtime",
 "name": "vis_receive",
 "version": "0.2.0"
 },
 "parameters": { ... }
}

There are two kinds of processing, real-time and batch (offline). Real-time
processing starts immediately, as it directly corresponds to an observation
that is about to start. Batch processing will be inserted into a scheduling
queue managed by the SDP, where it will typically be executed according to
resource availability.

Valid kinds are realtime and batch. The script tag identifies the
processing script version as well as the required underlying software (e.g.
execution engines, processing components). ... stands for arbitrary
processing script-defined parameters.

Processing Block State

Path: /pb/[pb_id]/state

Dynamic state information of the processing block. If it does not exist, the
processing block is still starting up.

Contents:

{
 "resources_available": True,
 "status": "RUNNING",
 "receive_addresses": [
 { "scan_type_id": "science", ... },
 { "scan_type_id": "calibration", ... },
],
 "last_updated": "2022-08-01 10:01:12"
}

Tracks the current state of the processing block. This covers both the
SDP-internal state (as defined by the Execution Control Data Model) as well as
information to publish via Tango for real-time processing, such as the status
and receive addresses (for ingest).

Processing Block Owner

Path: /pb/[pb_id]/owner

Identifies the process executing the script. Used for leader election/lock as
well as a debugging aid.

Contents:

{
 "command": [
 "vis_receive.py",
 "pb-mvp01-20200425-00000"
],
 "hostname": "pb-mvp01-20200425-00000-script-2kxfz",
 "pid": 1
}

Configuration API

High-Level API

High-level API for SKA SDP configuration.

	
class ska_sdp_config.config.Config(backend=None, global_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '', owner: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, component_name: str [https://docs.python.org/3/library/stdtypes.html#str] = None, wrapper: TxnWrapper | None [https://docs.python.org/3/library/constants.html#None] = None, **cargs)

	Connection to SKA SDP configuration.

	
property alive_key: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Get the alive key.

	Returns:

	alive key or None if not set

	
property backend: Backend

	Get the backend database object.

	
property client_lease: Lease

	Return the lease associated with the client.

It will be kept alive until the client gets closed.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the client connection.

	
is_alive() → bool [https://docs.python.org/3/library/functions.html#bool]

	Is the connection alive in the sense that the keep-alive key exists?

	Returns:

	whether it is

	
lease(ttl=10) → Lease

	Generate a new lease.

Once entered can be associated with keys,
which will be kept alive until the end of the lease. At that
point a daemon thread will be started automatically to refresh
the lease periodically (default seems to be TTL/4).

	Parameters:

	ttl – Time to live for lease

	Returns:

	lease object

	
set_alive() → None [https://docs.python.org/3/library/constants.html#None]

	Set the keep-alive key.

	
txn(max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Transaction | TxnWrapper]

	Create a Transaction for atomic configuration query/change.

As we do not use locks, transactions might have to be repeated in
order to guarantee atomicity. Suggested usage is as follows:

for txn in config.txn():
 # Use txn to read+write configuration
 # [Possibly call txn.loop()]

As the for loop suggests, the code might get run multiple
times even if not forced by calling
Transaction.loop(). Any writes using the transaction
will be discarded if the transaction fails, but the
application must make sure that the loop body has no other
observable side effects.

See also Usage Guide for best practices
for using transactions.

	Parameters:

	max_retries – Number of transaction retries before a
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] gets raised.

	
watcher(timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Watcher]

	Create a new watcher.

Useful for waiting for changes in the configuration. Calling
Etcd3Watcher.txn() on the returned watchers will
create Transaction objects just like
txn().

See also Usage Guide for best practices
for using watchers.

	Parameters:

	timeout – Timeout for waiting. Watcher will loop after this time.

	
class ska_sdp_config.config.Transaction(config: Any [https://docs.python.org/3/library/typing.html#typing.Any], txn: DbTransaction, paths: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]])

	High-level configuration queries and updates to execute atomically.

	
create_controller(state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Create controller state.

	Parameters:

	state – controller state

	
create_deployment(dpl: Deployment) → None [https://docs.python.org/3/library/constants.html#None]

	Request a change to cluster configuration.

	Parameters:

	dpl – Deployment to add to database

	
create_deployment_state(deploy_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Create Deployment state.

	Parameters:

	
	deploy_id – Deployment ID

	state – Deployment state to create

	
create_execution_block(eb_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Create execution block.

	Parameters:

	
	eb_id – execution block ID

	state – execution block state

	
create_is_alive(key: str [https://docs.python.org/3/library/stdtypes.html#str], lease: Lease) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Create an “is_alive” entry.

	Parameters:

	
	key – “is alive” key in database
e.g. “lmc-controller/owner”

	lease – to associate with the entry

	Returns:

	the full path of the entry

	
create_processing_block(pblock: ProcessingBlock) → None [https://docs.python.org/3/library/constants.html#None]

	Add a new ProcessingBlock to the configuration.

	Parameters:

	pblock – Processing block to create

	
create_processing_block_state(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Create processing block state.

	Parameters:

	
	pb_id – Processing block ID

	state – Processing block state to create

	
create_script(kind: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], version: str [https://docs.python.org/3/library/stdtypes.html#str], script: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Create processing script definition.

	Parameters:

	
	kind – script kind

	name – script name

	version – script version

	script – script definition

	
create_subarray(subarray_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Create subarray state.

	Parameters:

	
	subarray_id – subarray ID

	state – subarray state

	
delete_deployment(dpl: Deployment) → None [https://docs.python.org/3/library/constants.html#None]

	Undo a change to cluster configuration.

	Parameters:

	dpl – Deployment to remove

	
delete_execution_block(eb_id: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Delete an execution block (eb)

	Parameters:

	
	eb_id – Execution block ID

	recurse – if True, run recursive query and delete all objects

	
delete_processing_block(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Delete a processing block (pb)

	Parameters:

	
	pb_id – Processing block ID

	recurse – if True, run recursive query and delete all
includes deleting /state and /owner of pb if exists

	
delete_script(kind: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], version: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Delete processing script definition.

	Parameters:

	
	kind – script kind

	name – script name

	version – script version

	
get_controller() → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	Get controller state.

	Returns:

	controller state

	
get_deployment(deploy_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → Deployment | None [https://docs.python.org/3/library/constants.html#None]

	Retrieve details about a cluster configuration change.

	Parameters:

	deploy_id – Name of the deployment

	Returns:

	Deployment details

	
get_deployment_state(deploy_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	Get the current Deployment state.

	Parameters:

	deploy_id – Deployment ID

	Returns:

	Deployment state, or None if not present

	
get_execution_block(eb_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Get execution block.

	Parameters:

	eb_id – execution block ID

	Returns:

	execution block state

	
get_processing_block(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → ProcessingBlock | None [https://docs.python.org/3/library/constants.html#None]

	Look up processing block data.

	Parameters:

	pb_id – Processing block ID to look up

	Returns:

	Processing block entity, or None if it doesn’t exist

	
get_processing_block_owner(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	Look up the current processing block owner.

	Parameters:

	pb_id – Processing block ID to look up

	Returns:

	Processing block owner data, or None if not claimed

	
get_processing_block_state(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	Get the current processing block state.

	Parameters:

	pb_id – Processing block ID

	Returns:

	Processing block state, or None if not present

	
get_script(kind: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], version: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	Get processing script definition.

	Parameters:

	
	kind – script kind

	name – script name

	version – script version

	Returns:

	script definition

	
get_subarray(subarray_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	Get subarray state.

	Parameters:

	subarray_id – subarray ID

	Returns:

	subarray state

	
is_alive(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the “is alive” key still exists.

	Parameters:

	key – “is alive” key in database
e.g. “lmc-controller/owner”

	Returns:

	True if it does

	
is_processing_block_owner(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check whether this client is owner of the processing block.

	Parameters:

	pb_id – Processing block ID to look up

	Returns:

	Whether processing block exists and is claimed

	
list_deployments(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	List all current deployments.

	Returns:

	Deployment IDs

	
list_execution_blocks(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Query execution block IDs from the configuration.

	Parameters:

	prefix – if given, only search for execution block IDs
with the given prefix

	Returns:

	execution block IDs, in lexicographical order

	
list_processing_blocks(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Query processing block IDs from the configuration.

	Parameters:

	prefix – If given, only search for processing block IDs
with the given prefix

	Returns:

	Processing block ids, in lexicographical order

	
list_scripts(kind: str [https://docs.python.org/3/library/stdtypes.html#str] = '', name: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	List processing script definitions.

	Parameters:

	
	kind – script kind. Default empty

	name – script name. Default empty

	Returns:

	list of script definitions

	
list_subarrays(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Query subarray IDs from the configuration.

	Parameters:

	prefix – if given, only search for subarray IDs
with the given prefix

	Returns:

	subarray IDs, in lexicographical order

	
loop(wait: bool [https://docs.python.org/3/library/functions.html#bool] = False, timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Repeat transaction regardless of whether commit succeeds.

	Parameters:

	
	wait – If transaction succeeded, wait for any read
values to change before repeating it.

	timeout – Maximum time to wait, in seconds

	
new_execution_block_id(generator: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Generate a new execution block ID that is not yet in use.

	Parameters:

	generator – Name of the generator

	Returns:

	execution block ID

	
new_processing_block_id(generator: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Generate a new processing block ID that is not yet in use.

	Parameters:

	generator – Name of the generator

	Returns:

	Processing block ID

	
property raw: DbTransaction

	Return transaction object for accessing database directly.

	
take_processing_block(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], lease: Lease) → None [https://docs.python.org/3/library/constants.html#None]

	Take ownership of the processing block.

	Parameters:

	
	pb_id – Processing block ID to take ownership of

	lease – lease

	Raises:

	backend.ConfigCollision

	
update_controller(state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Update controller state.

	Parameters:

	state – controller state

	
update_deployment_state(deploy_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Update Deployment state.

	Parameters:

	
	deploy_id – Deployment ID

	state – Deployment state to update

	
update_execution_block(eb_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Update execution block.

	Parameters:

	
	eb_id – execution block ID

	state – execution block state

	
update_processing_block(pblock: ProcessingBlock) → None [https://docs.python.org/3/library/constants.html#None]

	Update a ProcessingBlock in the configuration.

	Parameters:

	pblock – Processing block to update

	
update_processing_block_state(pb_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Update processing block state.

	Parameters:

	
	pb_id – Processing block ID

	state – Processing block state to update

	
update_script(kind: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], version: str [https://docs.python.org/3/library/stdtypes.html#str], script: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Update processing script definition.

	Parameters:

	
	kind – script kind

	name – script name

	version – script version

	script – script definition

	
update_subarray(subarray_id: str [https://docs.python.org/3/library/stdtypes.html#str], state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → None [https://docs.python.org/3/library/constants.html#None]

	Update subarray state.

	Parameters:

	
	subarray_id – subarray ID

	state – subarray state

	
ska_sdp_config.config.dict_to_json(obj: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Format a dictionary for writing it into the database.

	Parameters:

	obj – Dictionary object to format

	Returns:

	String representation

Entities

Processing Block

Processing block configuration entities.

	
class ska_sdp_config.entity.pb.ProcessingBlock(pb_id, eb_id, script, parameters=None, dependencies=None, **kwargs)

	Processing block entity.

Collects configuration information relating to a processing job for the
SDP. This might be either real-time (supporting a running observation) or
batch (to process data after the fact).

Actual execution of processing steps will be performed by a (parameterised)
processing script interpreting processing block information.

	
property dependencies

	Return dependencies on other processing blocks.

	
property eb_id

	Return execution block instance ID, if associated with one.

	
property parameters

	Return processing script-specific parameters.

	
property pb_id

	Return the processing block ID.

	
property script

	Return information identifying the processing script.

	
to_dict()

	Return data as dictionary.

Deployment

Deployment configuration entities.

	
class ska_sdp_config.entity.deployment.Deployment(dpl_id, kind, args)

	Deployment entity.

Collects configuration information relating to a cluster
configuration change.

	
property args

	Return deployment arguments.

	
property dpl_id

	Return the deployment id.

	
property kind

	Return deployment kind.

	
to_dict()

	Return data as dictionary.

Backends

Common

Common functionality for implementing backends.

	
exception ska_sdp_config.backend.common.ConfigCollision(path: str [https://docs.python.org/3/library/stdtypes.html#str], message: str [https://docs.python.org/3/library/stdtypes.html#str])

	Exception generated if key to create already exists.

	
exception ska_sdp_config.backend.common.ConfigVanished(path: str [https://docs.python.org/3/library/stdtypes.html#str], message: str [https://docs.python.org/3/library/stdtypes.html#str])

	Exception generated if key to update that does not exist.

	
ska_sdp_config.backend.common.depth_of_path(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the depth of a path, this is the number of “/” in it.

	Returns:

	the depth

Etcd3 backend

Etcd3 backend for SKA SDP configuration DB.

	
class ska_sdp_config.backend.etcd3.Etcd3Backend(host='localhost', port='2379', max_retries: int [https://docs.python.org/3/library/functions.html#int] = 15, retry_time: float [https://docs.python.org/3/library/functions.html#float] = 0.1, **kw_args)

	Highly consistent database backend store.

See https://github.com/kragniz/python-etcd3

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the client connection.

	
create(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], lease: etcd3.Lease | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create a key and initialise it with the value.

	Parameters:

	
	path – Path to create

	value – Value to set

	lease – Lease to associate

	Raises:

	ConfigCollision if the key already exists

	
delete(path: str [https://docs.python.org/3/library/stdtypes.html#str], must_exist: bool [https://docs.python.org/3/library/functions.html#bool] = True, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = False, prefix: bool [https://docs.python.org/3/library/functions.html#bool] = False, max_depth: int [https://docs.python.org/3/library/functions.html#int] = 16)

	Delete the given key or key range.

	Parameters:

	
	path – path (prefix) of keys to remove

	must_exist – Fail if path does not exist?

	recursive – Delete children keys at lower levels recursively

	max_depth – Recursion limit

	prefix – Delete all keys at given level with prefix

	
get(path: str [https://docs.python.org/3/library/stdtypes.html#str], revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], DbRevision]

	Get value of a key.

	Parameters:

	
	path – Path of key to query

	revision – to get

	Returns:

	value and revision

	
lease(ttl: float [https://docs.python.org/3/library/functions.html#float] = 10) → Lease

	Generate a new lease.

Once entered, it can be associated with keys which will be kept
alive until the end of the lease.

Note that this involves starting a daemon thread that will refresh
the lease periodically (default seems to be TTL/4).

	Parameters:

	ttl – Time to live for lease

	Returns:

	lease object

	
list_keys(path: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: int [https://docs.python.org/3/library/functions.html#int] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]] = 0, revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None, with_values: bool [https://docs.python.org/3/library/functions.html#bool] = False) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], DbRevision]

	List keys under given path.

	Parameters:

	
	path – Prefix of keys to query. Append ‘/’ to list
child paths.

	recurse – Maximum recursion level to query. If iterable,
cover exactly the recursion levels specified.

	revision – Database revision for which to list

	with_values – Also return key values and mod revisions
(i.e. sorted list of key-value-rev tuples)

	Returns:

	(sorted key list, DbRevision object)

	
txn(max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Etcd3Transaction]

	Create a new transaction.

Note that this uses an optimistic STM-style implementation,
which cannot guarantee that a transaction runs through
successfully. Therefore, this function returns an iterator,
which loops until the transaction succeeds:

for txn in etcd3.txn():
 # ... transaction steps ...

Note that this will in most cases only execute one
iteration. If you actually want to loop - for instance because
you intend to wait for something to happen in the
configuration - use watcher() instead.

	Parameters:

	max_retries – Maximum number of transaction loops

	Returns:

	Transaction iterator

	
update(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Update an existing key. Fails if the key does not exist.

	Parameters:

	
	path – Path to update

	value – New value of key

	Raises:

	ConfigVanished if the key does not exist

	
watcher(timeout=None, txn_wrapper: Callable[['Etcd3Transaction'], object [https://docs.python.org/3/library/functions.html#object]] = None, requery_progress: float [https://docs.python.org/3/library/functions.html#float] = 0.2) → Iterable[Etcd3Watcher]

	Create a new watcher.

Useful for waiting for changes in the configuration. See
Etcd3Watcher.

	Parameters:

	
	timeout – Timeout for waiting. Watcher will loop after this time.

	txn_wrapper – Function to wrap transactions returned by the
wrapper.

	requery_progress – How often we “refresh” the current
database state for watcher transactions even without
watcher notification (upper bound on how “stale”
non-watched values retrieved in transactions can be)

	Returns:

	Watcher iterator

	
class ska_sdp_config.backend.etcd3.Etcd3Transaction(backend: Etcd3Backend, client: etcd3.client, max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64)

	A series of queries and updates to be executed atomically.

	
commit() → bool [https://docs.python.org/3/library/functions.html#bool]

	Commit the transaction to the database.

This can fail, in which case the transaction must get reset
and built again.

	Returns:

	Whether the commit succeeded

	
create(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], lease: etcd3.Lease | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create a key and initialise it with the value.

Fails if the key already exists. If a lease is given, the key will
automatically get deleted once it expires.

	Parameters:

	
	path – Path to create

	value – Value to set

	lease – Lease to associate

	Raises:

	ConfigCollision if the key already exists

	
delete(path: str [https://docs.python.org/3/library/stdtypes.html#str], must_exist: bool [https://docs.python.org/3/library/functions.html#bool] = True, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = False, max_depth: int [https://docs.python.org/3/library/functions.html#int] = 16, prefix: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Delete the given key.

	Parameters:

	
	path – Path of key to remove

	must_exist – Fail if path does not exist?

	recursive – Delete children keys at lower levels recursively
(not used yet)

	
get(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Get value of a key.

	Parameters:

	path – Path of key to query

	Returns:

	Key value. None if it doesn’t exist.

	
list_keys(path: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: int [https://docs.python.org/3/library/functions.html#int] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]] = 0) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	List keys under given path.

	Parameters:

	
	path – Prefix of keys to query. Append ‘/’ to list
child paths.

	recurse – Children depths to include in search

	Returns:

	sorted key list

	
on_commit(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], None [https://docs.python.org/3/library/constants.html#None]]) → None [https://docs.python.org/3/library/constants.html#None]

	Register a callback to call when the transaction succeeds.

Exists mostly to enable test cases.

	Parameters:

	callback – Callback to call

	
reset(revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Reset the transaction, so it can be restarted after commit().

	Parameters:

	revision – to reset

	Raises:

	RuntimeError if the transaction is not committed.

	
property revision: int [https://docs.python.org/3/library/functions.html#int]

	The last-committed database revision.

Only valid to call after the transaction has been committed.

	Returns:

	revision from DbRevision

	
update(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Update an existing key.

Fails if the key does not exist.

	Parameters:

	
	path – Path to update

	value – Value to set

	Raises:

	ConfigVanished if the key is not found

Etcd3 backend revolution 1

Etcd3 backend for SKA SDP configuration DB, using client from
https://github.com/Revolution1/etcd3-py

	
class ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1(*args, max_retries: int [https://docs.python.org/3/library/functions.html#int] = 15, retry_time: float [https://docs.python.org/3/library/functions.html#float] = 0.1, **kw_args)

	Highly consistent database backend store.

See https://github.com/etcd-io/etcd

All parameters will be passed on to etcd3.Client().

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the client connection.

	
create(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], lease: etcd3_revolution1.Lease = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create a key and initialise it with the value.

Fails if the key already exists. If a lease is given, the key will
automatically get deleted once it expires.

	Parameters:

	
	path – Path to create

	value – Value to set

	lease – Lease to associate

	Raises:

	ConfigCollision

	
delete(path: str [https://docs.python.org/3/library/stdtypes.html#str], must_exist: bool [https://docs.python.org/3/library/functions.html#bool] = True, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = False, prefix: bool [https://docs.python.org/3/library/functions.html#bool] = False, max_depth: int [https://docs.python.org/3/library/functions.html#int] = 16) → None [https://docs.python.org/3/library/constants.html#None]

	Delete the given key or key range.

	Parameters:

	
	path – Path (prefix) of keys to remove

	must_exist – Fail if path does not exist?

	recursive – Delete children keys at lower levels recursively

	prefix – Delete all keys at given level with prefix

	max_depth – Recursion limit

	Returns:

	Whether transaction was successful

	
get(path: str [https://docs.python.org/3/library/stdtypes.html#str], revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], DbRevision]

	Get value of a key.

	Parameters:

	
	path – Path of key to query

	revision – Database revision for which to read key

	Returns:

	(value, revision). value is None if it doesn’t exist

	
lease(ttl: int [https://docs.python.org/3/library/functions.html#int] = 10) → Lease

	Generate a new lease.

Once entered can be associated with keys, which will be kept
alive until the end of the lease. Note that this involves
starting a daemon thread that will refresh the lease
periodically (default seems to be TTL/4).

	Parameters:

	ttl – Time to live for lease

	Returns:

	lease object

	
list_keys(path: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: int [https://docs.python.org/3/library/functions.html#int] = 0, revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], DbRevision]

	List keys under given path.

	Parameters:

	
	path – Prefix of keys to query. Append ‘/’ to list
child paths.

	recurse – Maximum recursion level to query. If iterable,
cover exactly the recursion levels specified.

	revision – Database revision for which to list

	Returns:

	(sorted key list, revision)

	
txn(max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Etcd3Transaction]

	Create a new transaction.

Note that this uses an optimistic STM-style implementation,
which cannot guarantee that a transaction runs through
successfully. Therefore, this function returns an iterator,
which loops until the transaction succeeds:

for txn in etcd3.txn():
 # ... transaction steps ...

Note that this will in most cases only execute one
iteration. If you actually want to loop - for instance because
you intend to wait for something to happen in the
configuration - use watcher() instead.

	Parameters:

	max_retries – Maximum number of transaction loops

	Returns:

	Transaction iterator

	
update(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], must_be_rev: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Update an existing key. Fails if the key does not exist.

	Parameters:

	
	path – Path to update

	value – Value to set

	must_be_rev – Fail if found value does not match given
revision (atomic update)

	Raises:

	ConfigVanished

	
watch(path: str [https://docs.python.org/3/library/stdtypes.html#str], prefix: bool [https://docs.python.org/3/library/functions.html#bool] = False, revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None, depth: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Watch key or key range.

Use a path ending with ‘/’ in combination with prefix to
watch all child keys.

	Parameters:

	
	path – Path of key to query, or prefix of keys.

	prefix – Watch for keys with given prefix if set

	revision – Database revision from which to watch

	depth – tag depth

	Returns:

	Etcd3Watch object for watch request

	
watcher(timeout: float [https://docs.python.org/3/library/functions.html#float] = None, txn_wrapper: TxnWrapper = None) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Etcd3Watcher]

	Create a new watcher.

Useful for waiting for changes in the configuration. See
Etcd3Watcher.

	Parameters:

	
	timeout – Timeout for waiting. Watcher will loop after this time.

	txn_wrapper – Function to wrap transactions returned by the
wrapper.

	Returns:

	Watcher iterator

	
class ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction(backend: Etcd3BackendRevolution1, client: etcd3_revolution1.Client, max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64)

	A series of queries and updates to be executed atomically.

Use Etcd3Backend.txn() or Etcd3Watcher.txn()
to construct transactions.

	
clear_watch() → None [https://docs.python.org/3/library/constants.html#None]

	Stop all currently active watchers.

Deprecated: Use Etcd3Watcher instead.

	
commit() → bool [https://docs.python.org/3/library/functions.html#bool]

	Commit the transaction to the database.

This can fail, in which case the transaction must get reset
and built again.

	Returns:

	Whether the commit succeeded

	
create(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], lease: etcd3_revolution1.Lease = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create a key and initialise it with the value.

Fails if the key already exists. If a lease is given, the key will
automatically get deleted once it expires.

	Parameters:

	
	path – Path to create

	value – Value to set

	lease – Lease to associate

	Raises:

	ConfigCollision

	
delete(path: str [https://docs.python.org/3/library/stdtypes.html#str], must_exist: bool [https://docs.python.org/3/library/functions.html#bool] = True, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Delete the given key.

	Parameters:

	
	path – Path of key to remove

	must_exist – Fail if path does not exist?

	recursive – Delete children keys at lower levels recursively
(not used)

	
get(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get value of a key.

	Parameters:

	path – Path of key to query

	Returns:

	Key value. None if it doesn’t exist.

	
list_keys(path: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: int [https://docs.python.org/3/library/functions.html#int] = 0) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	List keys under given path.

	Parameters:

	
	path – Prefix of keys to query. Append ‘/’ to list
child paths.

	recurse – Children depths to include in search

	Returns:

	sorted key list

	
loop(watch: bool [https://docs.python.org/3/library/functions.html#bool] = False, watch_timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Repeat transaction execution, even if it succeeds.

Deprecated: Use Etcd3Watcher instead, or loop manually.

	Parameters:

	
	watch – Once the transaction succeeds, block until one of
the values read changes, then loop the transaction

	watch_timeout – timeout value

	
on_commit(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], None [https://docs.python.org/3/library/constants.html#None]]) → None [https://docs.python.org/3/library/constants.html#None]

	Register a callback to call when the transaction succeeds.

A bit of a hack, but occassionally useful to add additional
side-effects to a transaction that are guaranteed to not get
duplicated.

	Parameters:

	callback – Callback to call

	
reset(revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Reset the transaction, so it can be restarted after commit().

	
property revision: int [https://docs.python.org/3/library/functions.html#int]

	The last-committed database revision.

Only valid to call after the transaction has been comitted.

	
trigger_loop() → None [https://docs.python.org/3/library/constants.html#None]

	Manually triggers a loop

Effectively makes loop(True) behave like loop(False), looping
immediately. This is useful for interrupting a blocking
watch() from a different thread.

	
update(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Update an existing key. Fails if the key does not exist.

	Parameters:

	
	path – Path to update

	value – Value to set

	Raises:

	ConfigVanished

	
watch() → None [https://docs.python.org/3/library/constants.html#None]

	Wait for a change on one of the values read.

Deprecated: Use Etcd3Watcher instead.

	Returns:

	The revision at which a change was detected.

	
class ska_sdp_config.backend.etcd3_revolution1.Etcd3Watch(backend: Etcd3BackendRevolution1, tagged_path: str [https://docs.python.org/3/library/stdtypes.html#str], start_revision: int [https://docs.python.org/3/library/functions.html#int], prefix: bool [https://docs.python.org/3/library/functions.html#bool], max_retries: int [https://docs.python.org/3/library/functions.html#int] = 20, retry_time: float [https://docs.python.org/3/library/functions.html#float] = 0.1)

	Wrapper for etc3 watch requests.

Entering the watcher using a with block yields a queue of (key,
val, rev) triples.

	
start(queue: Queue [https://docs.python.org/3/library/queue.html#queue.Queue] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Activates the watcher, yielding a queue for updates.

	
stop()

	Deactivates the watcher.

	
class ska_sdp_config.backend.etcd3_revolution1.Etcd3Watcher(backend: Etcd3BackendRevolution1, client: etcd3_revolution1.Client, timeout: float [https://docs.python.org/3/library/functions.html#float] = None, txn_wrapper: TxnWrapper = None)

	Watch for database changes by using nested transactions

Use as follows:

for watcher in config.watcher():
 for txn in watcher.txn():
 # ... do something
 for txn in watcher.txn():
 # ... do something else

At the end of a for loop iteration, the watcher will start
watching all values read by transactions started through
txn(), and only repeat the execution of the loop body
once one of these values has changed.

	
trigger() → None [https://docs.python.org/3/library/constants.html#None]

	Manually triggers a loop

Can be called from a different thread to force a loop, even if
the watcher is currently waiting.

	
txn(max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Etcd3Transaction | TxnWrapper]

	Create nested transaction.

The watcher loop will iterate when any value read by
transactions created by this method have changed in the
database.

Note that these transactions otherwise behave exactly as
normal transactions: As long as they are internally
consistent, they will be commited. This means there is no
consistency guarantees between transactions created from the
same watcher, i.e. one transaction might read one value from
the database while a later one reads another.

	Parameters:

	max_retries – Maximum number of times the transaction will be
tried before giving up.

Etcd3 watcher

Memory backend

Memory backend for SKA SDP configuration DB.

The main purpose of this is for use in testing.
In principle, it should behave in the same way as the etcd backend.
No attempt has been made to make it thread-safe, so it probably isn’t.

	
class ska_sdp_config.backend.memory.MemoryBackend

	In-memory backend implementation, principally for testing.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the resource. This does nothing.

	
create(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], lease: Lease | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create a key and initialise it with the value.

	Parameters:

	
	path – Path to create

	value – Value to set

	lease – Lease to associate

	Raises:

	ConfigCollision if the key already exists

	
delete(path: str [https://docs.python.org/3/library/stdtypes.html#str], must_exist: bool [https://docs.python.org/3/library/functions.html#bool] = True, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = False, prefix: bool [https://docs.python.org/3/library/functions.html#bool] = False, max_depth: int [https://docs.python.org/3/library/functions.html#int] = 16) → None [https://docs.python.org/3/library/constants.html#None]

	Delete the given key or key range.

	Parameters:

	
	path – path (prefix) of keys to remove

	must_exist – Fail if path does not exist?

	recursive – Delete children keys at lower levels recursively

	max_depth – Recursion limit

	prefix – Delete all keys at given level with prefix

	
get(path: str [https://docs.python.org/3/library/stdtypes.html#str], revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], DbRevision]

	Get value of a key.

	Parameters:

	
	path – Path of key to query

	revision – to get

	Returns:

	value and revision

	
lease(ttl: float [https://docs.python.org/3/library/functions.html#float] = 10) → Lease

	Generate a dummy lease object.

	Parameters:

	ttl – time to live

	Returns:

	dummy lease object

	
list_keys(path: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: int [https://docs.python.org/3/library/functions.html#int] = 0) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of the keys at the given path.

In common with the etcd backend, the structure is
“flat” rather than a real hierarchy, even though it looks like one.

	Parameters:

	
	path – prefix of keys to query

	recurse – maximum recursion level to query

	Returns:

	list of keys

	
txn(max_retries: int [https://docs.python.org/3/library/functions.html#int] = 64) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][MemoryTransaction]

	Create an in-memory “transaction”.

	Parameters:

	max_retries – Maximum number of transaction loops

	Returns:

	transaction object

	
update(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Update an existing key. Fails if the key does not exist.

	Parameters:

	
	path – Path to update

	value – New value of key

	Raises:

	ConfigVanished if the key does not exist

	
watcher(timeout: float [https://docs.python.org/3/library/functions.html#float] = None, txn_wrapper: TxnWrapper = None) → Watcher

	Create an in-memory “watcher”.

	Parameters:

	
	timeout – timeout in seconds

	txn_wrapper – wrapper (factory) to return transaction

	Returns:

	MemoryWatcher object (mock of Etcd3Watcher)

	
class ska_sdp_config.backend.memory.MemoryTransaction(backend: Backend)

	Transaction wrapper around the backend implementation.

Transactions always succeed if they are valid, so there is no need
to loop; however the iterator is supported for compatibility with
the etcd backend.

	
commit() → bool [https://docs.python.org/3/library/functions.html#bool]

	Commit the transaction. This does nothing.

	
create(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str], lease: Lease | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create a key and initialise it with the value.

Fails if the key already exists. If a lease is given, the key will
automatically get deleted once it expires.

	Parameters:

	
	path – Path to create

	value – Value to set

	lease – Lease to associate

	Raises:

	ConfigCollision if the key already exists

	
delete(path: str [https://docs.python.org/3/library/stdtypes.html#str], must_exist: bool [https://docs.python.org/3/library/functions.html#bool] = True, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Delete the given key.

	Parameters:

	
	path – Path of key to remove

	must_exist – Fail if path does not exist?

	recursive – Delete children keys at lower levels recursively
(not used yet)

	
get(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get value of a key.

	Parameters:

	path – Path of key to query

	Returns:

	Key value or None if it doesn’t exist.

	
list_keys(path: str [https://docs.python.org/3/library/stdtypes.html#str], recurse: int [https://docs.python.org/3/library/functions.html#int] = 0) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	List keys under given path.

	Parameters:

	
	path – Prefix of keys to query. Append ‘/’ to list
child paths.

	recurse – Children depths to include in search

	Returns:

	sorted key list

	
loop(*_args, **_kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Loop the transaction. This does nothing.

	
reset(revision: DbRevision | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Reset the transaction. This does nothing.

	
update(path: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Update an existing key.

Fails if the key does not exist.

	Parameters:

	
	path – Path to update

	value – Value to set

	Raises:

	ConfigVanished if the key is not found

	
class ska_sdp_config.backend.memory.MemoryWatcher(backend: Backend, timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None, txn_wrapper: TxnWrapper = None)

	Watcher wrapper around the backend implementation (Etcd3Watcher).

	
txn() → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][MemoryTransaction]

	Yield the wrapped MemoryTransaction object.

It does not implement the commit check that is part of
Etcd3Watcher.txn(), hence it acts as MemoryBackend.txn()

SDP command-line interface

Command Line Interface: ska-sdp

To run the CLI, you must start a shell in the console pod
(assuming you have SDP deployed in Kubernetes/Minikube, for instructions follow:
SDP standalone [https://developer.skao.int/projects/ska-sdp-integration/en/latest/running/standalone.html]).

kubectl exec -it ska-sdp-console-0 -n <namespace> -- bash

Once in, to access the help window of ska-sdp, run:

ska-sdp -h

Command - SDP Object matrix

This is a table/matrix of the existing commands of ska-sdp and what they can
do with a specific SDP Object.

Commands:

	list

	get/watch

	create

	update/edit

	end

	delete

	import

SDP Objects:

	pb (processing block)

	script (processing script definition)

	deployment

	eb (execution block)

	controller (Tango controller device)

	subarray (Tango subarray device)

	
	pb

	script

	deployment

	eb

	other

	list

	
	list all pbs

	list pbs for a certain date

	
	list all script definitions

	list a script def of a specific kind (batch or realtime)

	list all deployments

	list all ebs

	
	if -a | –all: list all the contents of the Config DB

	if -v | –values: list keys with values (or just values)

	if –prefix: list limited to this prefix (for testing purposes)

	if controller, list the device entry if there is one

	if subarray, list all subarray device entries

	get/watch

	
	get the value of a single key

	get the values of all pb-related keys for a single pb-id

	get the value of a single key

	get the value of a single key

	get the value of a single key

	Note: rules for get and watch are the same

	create

	
	create a pb to run a processing script

	if –eb: add eb parameters for real-time pb

	create a key/value pair with prefix of /script

	create a deployment of given deployment-id, kind, and parameters

	create a key/value pair with prefix of /eb

	Not implemented for Tango devices

	update/edit

	update/edit the state of a pb with a given pb-id

	
	update a given key with a given value

	edit a given key

	
	update a given key with a given value

	edit a given key

	
	update a given key with a given value

	edit a given key

	
	update a Tango device entry

	edit a Tango device entry

	delete

	
	delete all pbs (need confirmation)

	delete all pb entries for a single pb-id

	
	delete all script defs (need confirmation)

	delete script def for a single key (kind:name:version)

	
	delete all deployments (need confirmation)

	delete deployment for a single deployment-id

	
	delete all ebs (need confirmation)

	delete eb for a single eb-id

	
	if –prefix: append prefix in front of path and perform same

	deletion as listed under SDP object type.

	end

	n/a

	n/a

	n/a

	end execution block for a single eb-id (status set to FINISHED)

	if -c | –cancel: Cancel the execution block (status set to CANCELLED)

	import

	n/a

	import script definitions from file or URL

	n/a

	n/a

	

Relevant environment variables

Backend-related:

SDP_CONFIG_BACKEND Database backend (default etcd3)
SDP_CONFIG_HOST Database host address (default 127.0.0.1)
SDP_CONFIG_PORT Database port (default 2379)
SDP_CONFIG_PROTOCOL Database access protocol (default http)
SDP_CONFIG_CERT Client certificate
SDP_CONFIG_USERNAME User name
SDP_CONFIG_PASSWORD User password

When running ska-sdp edit:

EDITOR Executable of an existing text editor. Recommended: vi, vim, nano (i.e. command line-based editors)

Usage

> ska-sdp --help

Command line utility for interacting with SKA Science Data Processor (SDP).

Usage:
 ska-sdp COMMAND [options] [SDP_OBJECT] [<args>...]
 ska-sdp COMMAND (-h|--help)
 ska-sdp (-h|--help)

SDP Objects:
 pb Interact with processing blocks
 script Interact with available processing script definitions
 deployment Interact with deployments
 eb Interact with execution blocks
 controller Interact with Tango controller device
 subarray Interact with Tango subarray device

Commands:
 list List information of object from the Configuration DB
 get | watch Print all the information (i.e. value) of a key in the Config DB
 create Create a new, raw key-value pair in the Config DB;
 Run a processing script; Create a deployment
 update Update a raw key value from CLI
 edit Edit a raw key value from text editor
 delete Delete a single key or all keys within a path from the Config DB
 end Stop/Cancel execution block
 import Import processing script definitions from file or URL

> ska-sdp list --help

List keys (and optionally values) within the Configuration Database.

Usage:
 ska-sdp list (-a |--all) [options]
 ska-sdp list [options] pb [<date>]
 ska-sdp list [options] script [<kind>]
 ska-sdp list [options] (deployment|eb|controller|subarray)
 ska-sdp list (-h|--help)

Arguments:
 <date> Date on which the processing block(s) were created. Expected format: YYYYMMDD
 If not provided, all pbs are listed.
 <kind> Kind of processing script definition. Batch or realtime.
 If not provided, all scripts are listed.

Options:
 -h, --help Show this screen
 -q, --quiet Cut back on unnecessary output
 -a, --all List the contents of the Config DB, regardless of object type
 -v, --values List all the values belonging to a key in the config db; default: False
 --prefix=<prefix> Path prefix (if other than standard Config paths, e.g. for testing)

> ska-sdp (get|watch) --help

Get/Watch all information of a single key in the Configuration Database.

Usage:
 ska-sdp (get|watch) [options] <key>
 ska-sdp (get|watch) [options] pb <pb-id>
 ska-sdp (get|watch) (-h|--help)

Arguments:
 <key> Key within the Config DB.
 To get the list of all keys:
 ska-sdp list -a
 <pb-id> Processing block id to list all entries and their values for.
 Else, use key to get the value of a specific pb.

Options:
 -h, --help Show this screen
 -q, --quiet Cut back on unnecessary output

> ska-sdp create --help

Create SDP objects (deployment, script, eb) in the Configuration Database.
Create a processing block to run a script.

Usage:
 ska-sdp create [options] pb <script> [<parameters>] [--eb=<eb-parameters>]
 ska-sdp create [options] deployment <item-id> <kind> <parameters>
 ska-sdp create [options] (script|eb) <item-id> <value>
 ska-sdp create (-h|--help)

Arguments:
 <script> Script that the processing block will run, in the format:
 kind:name:version
 <parameters> Optional parameters for a script, with expected format:
 '{"key1": "value1", "key2": "value2"}'
 For deployments, expected format:
 '{"chart": <chart-name>, "values": <dict-of-values>}'
 <eb-parameters> Optional eb parameters for a real-time script
 <item-id> Id of the new deployment, script or eb
 <kind> Kind of the new deployment (currently "helm" only)

Options:
 -h, --help Show this screen
 -q, --quiet Cut back on unnecessary output

Example:
 ska-sdp create eb eb-test-20210524-00000 '{"test": true}'
 Result in the config db:
 key: /eb/eb-test-20210524-00000
 value: {"test": true}

Note: You cannot create processing blocks apart from when they are called to run a script.

> ska-sdp (update|edit) --help

Update the value of a single key or processing block state.
Can either update from CLI, or edit via a text editor.

Usage:
 ska-sdp update [options] (script|eb|deployment) <item-id> <value>
 ska-sdp update [options] pb-state <item-id> <value>
 ska-sdp update [options] controller <value>
 ska-sdp update [options] subarray <item-id> <value>
 ska-sdp edit (script|eb|deployment) <item-id>
 ska-sdp edit pb-state <item-id>
 ska-sdp edit controller
 ska-sdp edit subarray <item-id>
 ska-sdp (update|edit) (-h|--help)

Arguments:
 <item-id> id of the script, eb, deployment, processing block or subarray
 <value> Value to update the key/pb state with.

Options:
 -h, --help Show this screen
 -q, --quiet Cut back on unnecessary output

Note:
 ska-sdp edit needs an environment variable defined:
 EDITOR: Has to match the executable of an existing text editor
 Recommended: vi, vim, nano (i.e. command line-based editors)
 Example: EDITOR=vi ska-sdp edit <key>
 Processing blocks cannot be changed, apart from their state.

Example:
 ska-sdp edit eb eb-test-20210524-00000
 --> key that's edited: /eb/eb-test-20210524-00000
 ska-sdp edit script batch:test:0.0.0
 --> key that's edited: /script/batch:test:0.0.0
 ska-sdp edit pb-state some-pb-id-0000
 --> key that's edited: /pb/some-pb-id-0000/state

> ska-sdp delete --help

Delete a key from the Configuration Database.

Usage:
 ska-sdp delete (-a|--all) [options] (pb|script|eb|deployment|prefix)
 ska-sdp delete [options] (pb|eb|deployment) <item-id>
 ska-sdp delete [options] script <script>
 ska-sdp delete (-h|--help)

Arguments:
 <item-id> ID of the processing block, or deployment, or execution block
 <script> Script definition to be deleted. Expected format: kind:name:version
 prefix Use this "SDP Object" when deleting with a non-object-specific, user-defined prefix

Options:
 -h, --help Show this screen
 -q, --quiet Cut back on unnecessary output
 --prefix=<prefix> Path prefix (if other than standard Config paths, e.g. for testing)

> ska-sdp end --help

End execution block in the configuration database.
By default it sets the status to FINISHED. If the --cancel flag is set, it sets
the status to CANCELLED.

Usage:
 ska-sdp end eb <eb-id> [options]
 ska-sdp end (-h|--help)

Arguments:
<eb-id> ID of execution block to end

Options:
 -c, --cancel Cancel the execution block
 -h, --help Show this screen
 -q, --quiet Cut back on unnecessary output

> ska-sdp import --help

Import processing script definitions into the Configuration Database.

Usage:
 ska-sdp import scripts [options] <file-or-url>
 ska-sdp import (-h|--help)

Arguments:
 <file-or-url> File or URL to import script definitions from.

Options:
 -h, --help Show this screen
 --sync Delete scripts not in the input

Example script definitions file

You can also use a script definitions file to import processing scripts into the Config DB.
An example script definitions file looks like

scripts:
- kind: realtime
 name: test_realtime
 version: 0.2.2
 image: artefact.skao.int/ska-sdp-script-test-realtime:0.2.2
- kind: batch
 name: test_batch
 version: 0.2.2
 image: artefact.skao.int/ska-sdp-script-test-batch:0.2.2

Both YAML and JSON files are accepted. After the import, you can check via
.. code-block:: bash

ska-sdp list script

It will output a list of processing scripts that are available to use.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 ska_sdp_config	

 	
 	
 ska_sdp_config.backend.common	

 	
 	
 ska_sdp_config.backend.etcd3	

 	
 	
 ska_sdp_config.backend.etcd3_revolution1	

 	
 	
 ska_sdp_config.backend.memory	

 	
 	
 ska_sdp_config.config	

 	
 	
 ska_sdp_config.entity.deployment	

 	
 	
 ska_sdp_config.entity.pb	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	alive_key (ska_sdp_config.config.Config property)

 	
 	args (ska_sdp_config.entity.deployment.Deployment property)

B

 	
 	backend (ska_sdp_config.config.Config property)

C

 	
 	clear_watch() (ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	client_lease (ska_sdp_config.config.Config property)

 	close() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.config.Config method)

 	commit() (ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	Config (class in ska_sdp_config.config)

 	ConfigCollision

 	ConfigVanished

 	create() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	
 	create_controller() (ska_sdp_config.config.Transaction method)

 	create_deployment() (ska_sdp_config.config.Transaction method)

 	create_deployment_state() (ska_sdp_config.config.Transaction method)

 	create_execution_block() (ska_sdp_config.config.Transaction method)

 	create_is_alive() (ska_sdp_config.config.Transaction method)

 	create_processing_block() (ska_sdp_config.config.Transaction method)

 	create_processing_block_state() (ska_sdp_config.config.Transaction method)

 	create_script() (ska_sdp_config.config.Transaction method)

 	create_subarray() (ska_sdp_config.config.Transaction method)

D

 	
 	delete() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	delete_deployment() (ska_sdp_config.config.Transaction method)

 	
 	delete_execution_block() (ska_sdp_config.config.Transaction method)

 	delete_processing_block() (ska_sdp_config.config.Transaction method)

 	delete_script() (ska_sdp_config.config.Transaction method)

 	dependencies (ska_sdp_config.entity.pb.ProcessingBlock property)

 	Deployment (class in ska_sdp_config.entity.deployment)

 	depth_of_path() (in module ska_sdp_config.backend.common)

 	dict_to_json() (in module ska_sdp_config.config)

 	dpl_id (ska_sdp_config.entity.deployment.Deployment property)

E

 	
 	eb_id (ska_sdp_config.entity.pb.ProcessingBlock property)

 	Etcd3Backend (class in ska_sdp_config.backend.etcd3)

 	Etcd3BackendRevolution1 (class in ska_sdp_config.backend.etcd3_revolution1)

 	
 	Etcd3Transaction (class in ska_sdp_config.backend.etcd3)

 	(class in ska_sdp_config.backend.etcd3_revolution1)

 	Etcd3Watch (class in ska_sdp_config.backend.etcd3_revolution1)

 	Etcd3Watcher (class in ska_sdp_config.backend.etcd3_revolution1)

G

 	
 	get() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	get_controller() (ska_sdp_config.config.Transaction method)

 	
 	get_deployment() (ska_sdp_config.config.Transaction method)

 	get_deployment_state() (ska_sdp_config.config.Transaction method)

 	get_execution_block() (ska_sdp_config.config.Transaction method)

 	get_processing_block() (ska_sdp_config.config.Transaction method)

 	get_processing_block_owner() (ska_sdp_config.config.Transaction method)

 	get_processing_block_state() (ska_sdp_config.config.Transaction method)

 	get_script() (ska_sdp_config.config.Transaction method)

 	get_subarray() (ska_sdp_config.config.Transaction method)

I

 	
 	is_alive() (ska_sdp_config.config.Config method)

 	(ska_sdp_config.config.Transaction method)

 	
 	is_processing_block_owner() (ska_sdp_config.config.Transaction method)

K

 	
 	kind (ska_sdp_config.entity.deployment.Deployment property)

L

 	
 	lease() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.config.Config method)

 	list_deployments() (ska_sdp_config.config.Transaction method)

 	list_execution_blocks() (ska_sdp_config.config.Transaction method)

 	list_keys() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	
 	list_processing_blocks() (ska_sdp_config.config.Transaction method)

 	list_scripts() (ska_sdp_config.config.Transaction method)

 	list_subarrays() (ska_sdp_config.config.Transaction method)

 	loop() (ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	(ska_sdp_config.config.Transaction method)

M

 	
 	MemoryBackend (class in ska_sdp_config.backend.memory)

 	MemoryTransaction (class in ska_sdp_config.backend.memory)

 	MemoryWatcher (class in ska_sdp_config.backend.memory)

 	
 module

 	ska_sdp_config.backend.common

 	ska_sdp_config.backend.etcd3

 	ska_sdp_config.backend.etcd3_revolution1

 	ska_sdp_config.backend.memory

 	ska_sdp_config.config

 	ska_sdp_config.entity.deployment

 	ska_sdp_config.entity.pb

N

 	
 	new_execution_block_id() (ska_sdp_config.config.Transaction method)

 	
 	new_processing_block_id() (ska_sdp_config.config.Transaction method)

O

 	
 	on_commit() (ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

P

 	
 	parameters (ska_sdp_config.entity.pb.ProcessingBlock property)

 	
 	pb_id (ska_sdp_config.entity.pb.ProcessingBlock property)

 	ProcessingBlock (class in ska_sdp_config.entity.pb)

R

 	
 	raw (ska_sdp_config.config.Transaction property)

 	reset() (ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	
 	revision (ska_sdp_config.backend.etcd3.Etcd3Transaction property)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction property)

S

 	
 	script (ska_sdp_config.entity.pb.ProcessingBlock property)

 	set_alive() (ska_sdp_config.config.Config method)

 	
 ska_sdp_config.backend.common

 	module

 	
 ska_sdp_config.backend.etcd3

 	module

 	
 ska_sdp_config.backend.etcd3_revolution1

 	module

 	
 ska_sdp_config.backend.memory

 	module

 	
 	
 ska_sdp_config.config

 	module

 	
 ska_sdp_config.entity.deployment

 	module

 	
 ska_sdp_config.entity.pb

 	module

 	start() (ska_sdp_config.backend.etcd3_revolution1.Etcd3Watch method)

 	stop() (ska_sdp_config.backend.etcd3_revolution1.Etcd3Watch method)

T

 	
 	take_processing_block() (ska_sdp_config.config.Transaction method)

 	to_dict() (ska_sdp_config.entity.deployment.Deployment method)

 	(ska_sdp_config.entity.pb.ProcessingBlock method)

 	Transaction (class in ska_sdp_config.config)

 	trigger() (ska_sdp_config.backend.etcd3_revolution1.Etcd3Watcher method)

 	trigger_loop() (ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	
 	txn() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Watcher method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.backend.memory.MemoryWatcher method)

 	(ska_sdp_config.config.Config method)

U

 	
 	update() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3.Etcd3Transaction method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.backend.memory.MemoryTransaction method)

 	
 	update_controller() (ska_sdp_config.config.Transaction method)

 	update_deployment_state() (ska_sdp_config.config.Transaction method)

 	update_execution_block() (ska_sdp_config.config.Transaction method)

 	update_processing_block() (ska_sdp_config.config.Transaction method)

 	update_processing_block_state() (ska_sdp_config.config.Transaction method)

 	update_script() (ska_sdp_config.config.Transaction method)

 	update_subarray() (ska_sdp_config.config.Transaction method)

W

 	
 	watch() (ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3Transaction method)

 	watcher() (ska_sdp_config.backend.etcd3.Etcd3Backend method)

 	(ska_sdp_config.backend.etcd3_revolution1.Etcd3BackendRevolution1 method)

 	(ska_sdp_config.backend.memory.MemoryBackend method)

 	(ska_sdp_config.config.Config method)

 nav.xhtml

 Table of Contents

 		
 SDP Configuration Library

 		
 Installation and Usage

 		
 Install with pip

 		
 Basic usage

 		
 Command line

 		
 Running unit tests locally

 		
 Design and Best Practices

 		
 Transaction Basics

 		
 Usage Guidelines

 		
 Wrapping transactions

 		
 Dealing with roll-backs

 		
 Watchers

 		
 Etcd3 Backend Implementation

 		
 Previous Etcd3 Backend Implementation

 		
 Configuration Schema

 		
 Execution Block

 		
 Processing Block

 		
 Processing Block State

 		
 Processing Block Owner

 		
 Configuration API

 		
 High-Level API

 		
 Config

 		
 Transaction

 		
 dict_to_json()

 		
 Entities

 		
 Processing Block

 		
 Deployment

 		
 Backends

 		
 Common

 		
 Etcd3 backend

 		
 Etcd3 backend revolution 1

 		
 Etcd3 watcher

 		
 Memory backend

 		
 SDP command-line interface

 		
 Command - SDP Object matrix

 		
 Relevant environment variables

 		
 Usage

 		
 Example script definitions file

_static/plus.png

_static/file.png

_static/minus.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

