
developer.skao.int Documentation
Release 0.5.0

Marco Bartolini

Mar 13, 2024

CONTENTS

1 Installation and Usage 3

2 Design and Best Practices 5

3 Configuration Schema 11

4 Configuration API 15

5 SDP command-line interface 17

6 Indices and tables 25

Python Module Index 27

Index 29

i

ii

developer.skao.int Documentation, Release 0.5.0

This repository contains the library for accessing SKA SDP configuration information. It provides ways for SDP
controller and processing components to discover and manipulate the intended state of the system.

At the moment this is implemented on top of etcd, a highly-available database. This library provides primitives for
atomic queries and updates to the stored configuration information.

CONTENTS 1

developer.skao.int Documentation, Release 0.5.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION AND USAGE

1.1 Install with pip

pip install ska-sdp-config --extra-index-url https://artefact.skao.int/repository/pypi-
→˓internal/simple

1.2 Basic usage

Make sure you have a database backend accessible (etcd3 is supported at the moment). Location can be configured
using the SDP_CONFIG_HOST and SDP_CONFIG_PORT environment variables. The defaults are 127.0.0.1 and 2379,
which should work with a local etcd started without any configuration.

You can find etcd pre-built binaries, for Linux, Windows, and macOS, here: https://github.com/etcd-io/etcd/releases.

You can also use homebrew to install etcd on macOS:

brew install etcd

If you encounter issues follow: https://brewinstall.org/install-etcd-on-mac-with-brew/

This should give you access to SDP configuration information, for instance try:

import ska_sdp_config

config = ska_sdp_config.Config()

for txn in config.txn():
for pb_id in txn.list_processing_blocks():

pb = txn.get_processing_block(pb_id)
print("{} ({}:{})".format(pb_id, pb.script['name'], pb.script['version']))

To read a list of currently active processing blocks with their associated scripts.

3

https://github.com/etcd-io/etcd/releases
https://brewinstall.org/install-etcd-on-mac-with-brew/

developer.skao.int Documentation, Release 0.5.0

1.3 Command line

This package also comes with a command line utility for easy access to configuration data. For instance run:

SDP command-line interface

1.4 Running unit tests locally

You will need to have a database backend to run the tests as well. See “Basic usage” above for instructions on how to
install an etcd backend on your machine.

Once you started the database (run etcd in the command line), you will be able to run the tests using pytest.

Alternative way is by using the two shell scripts in the scripts directory:

docker_run_etcd.sh -> Which runs etcd in a Docker container for testing the code. docker_run_python.sh ->
Runs a python container and connects to the etcd instance.

Run the scripts from the root of the repository:

bash scripts/docker_run_etcd.sh
bash scripts/docker_run_python.sh

Once the container is started and mounted to the local directory.

Since the dependencies are managed by poetry, either run a poetry install, or pip install the repository (from the root):

pip install -e .

Then run the tests:

pytest tests/

4 Chapter 1. Installation and Usage

CHAPTER

TWO

DESIGN AND BEST PRACTICES

Quick points:

• Uses a key-value store

• Objects are represented as JSON

• Uses watchers on a key or range of keys to monitor for any updates

2.1 Transaction Basics

The SDP configuration database interface is built around the concept of transactions, i.e. blocks of read and write
queries to the database state that are guaranteed to be executed atomically. For example, consider this code:

for txn in config.txn():
a = txn.get('a')
if a is None:

txn.create('a', '1')
else:

txn.update('a', str(int(a)+1))

It is guaranteed that we increment the ‘a’ key by exactly one here, no matter how many other processes might be
operating on it. How does this work?

The way transactions are implemented follows the philosophy of Software Transactional Memory as opposed to a lock-
based implementation. The idea is that all reads are performed, but all writes are actually delayed until the end of
the transaction. So in the above example, ‘a’ is actually read from the database, but the ‘put’ call is not performed
immediately.

Once the transaction finishes (the end of the for loop), the transaction commit sends a single request to the database
that updates all written values only if none of the read values have been written in the meantime. If the commit fails,
we repeat the transaction (that’s why it is a loop!) until it succeeds. The idea is that this is fairly rare, and repeating the
transaction should typically be cheap.

5

https://en.wikipedia.org/wiki/Software_transactional_memory

developer.skao.int Documentation, Release 0.5.0

2.2 Usage Guidelines

What does this mean for everyday usage? Transactions should be as self-contained as possible - i.e. they should
explicitly contain all assumptions about the database state they are making. If we wrote the above transaction as
follows:

for txn in config.txn():
a = txn.get('a')

for txn in config.txn():
if a is None:

txn.create('a', '1')
else:

txn.update('a', str(int(a)+1))

A whole number of things could happen between the first and the second transaction:

1. The ‘a’ key could not exist in the first transaction, but could have been created by the second (which would cause
us to fail)

2. The ‘a’ key could exist in the first transaction, but could have been deleted by the second (which would also cause
the above to fail)

3. Another transaction might have updated the ‘a’ key with a new value (which would cause that update to be lost)

A rule of thumb is that you should assume nothing about the database state at the start of a transaction. If you rely on
something, you need to (re)query it after you enter it. If for some reason you couldn’t merge the transactions above,
you should write something like:

for txn in config.txn():
a = txn.get('a')

for txn in config.txn():
assert txn.get('a') == a, "database state independently updated!"
if a is None:

txn.create('a', '1')
else:

txn.update('a', str(int(a)+1))

This would especially catch case (3) above. This sort of approach can be useful when we want to make sub-transactions
that only depend on a part of the overall state:

for txn in config.txn():
keys = txn.list_keys('/as/')

for key in keys:
for txn in config.txn():

a = txn.get(key)
Safety check: Path might have vanished in the meantime!
if a is None:

break
... do something that depends solely on existance of "key" ...

This can especially be combined with watchers (see below) to keep track of many objects without requiring huge
transactions.

6 Chapter 2. Design and Best Practices

developer.skao.int Documentation, Release 0.5.0

2.3 Wrapping transactions

The safest way to work with transactions is to make them as “large” as possible, spanning all the way from getting
inputs to writing outputs. This should be the default unless we have a strong reason to do it differently (examples for
such reasons would be transactions becoming too large, or transactions taking so long that they never finish - but either
should be extremely rare).

However, in the context of a program with complex behaviour this might appear cumbersome: This means we have
to pass the transaction object to every single method that could either read or write the state. An elegant way to get
around this is to move such methods to a “model” class that wraps the transaction itself:

def IncrementModel(Transaction):
def __init__(self, txn):

self._txn = txn
def increase(key):

a = self._txn.get(key)
if a is None:

self._txn.create(key, '1')
else:

self._txn.update(key, str(int(a)+1))

...
for txn in config.txn():

model = IncrementModel(txn)
model.increase('a')

In fact, we can provide factory functions that entirely hide the transaction object from view:

def increment_txn(config):
for txn in config.txn():

yield IncrementModel(txn)

...
for model in increment_txn(config):

model.increase('a')

We could wrap this model the same way again to build as many abstraction layers as we want - key is that high-level
methods such as “increase” are now directly tied to the existence of a transaction object.

2.4 Dealing with roll-backs

Especially as we start wrapping transactions more and more, we must keep in mind that while we can easily “roll back”
any writes of the transaction (as they are not actually performed immediately), the same might not be true for program
state. So for instance, the following would be unsafe:

to_update = ['a','b','c']
for model in increment_txn():

while to_update:
model.increase(to_update.pop())

Clearly this transaction would work differently the second time around! For this reason it is a good idea to keep in mind
that while we expect the for to only execute once, it is entirely possible that they would execute multiple times, and the
code should be written accordingly.

2.3. Wrapping transactions 7

developer.skao.int Documentation, Release 0.5.0

Fortunately, this sort of occurrence should be relatively rare - the following might be more typical:

objects_found = []
for model in increment_txn():

for obj in model.list_objects():
if model.some_check(obj):

LOGGER.debug(f'Found {obj}!')
objects_found.append(obj)

In this case, objects_found might contain duplicate objects if the transaction repeats - which could be easily fixed by
moving the initialisation into the for loop.

On the other hand, note that transaction loops might also lead to duplicated log lines here, which might be seen as
confusing. In this case, this is relatively benign and therefore likely acceptable. It might be possible to generate log
messages at the start and end of transactions to make this more visible.

Another possible approach could be to replicate the transaction behaviour: for example, we could make the logging
calls to IncrementModel, which would internally aggregate the logging lines to generate, which increement_txn could
then emit in one go once the transaction actually goes through.

2.5 Watchers

Occasionally we might want to actively track something in the configuration. For sake of example, let’s say we want to
wait for a key to appear so we can print it. A simple implementation using polling might look like the following:

while True:
for txn in config.txn():

line = txn.get('/line_to_print')
if line is not None:

txn.delete('/line_to_print')
if line is not None:

print(line)
time.sleep(1)

(Note that we are making sure to print outside the transaction loop - otherwise lines might get printed multiple times if
we were running more than one instance of this program in parallel!)

But clearly this is not very good - it re-queries the database every second, which adds database load and is pretty slow.
Instead, we can use a watcher loop:

for watcher in config.watcher():
for txn in watcher.txn():

line = txn.get('/line_to_print')
if line is not None:

txn.delete('/line_to_print')
if line is not None:

print(line)

Note that we are calling txn on the watcher instead of config: What is happening here is that the watcher object collects
keys read by the transaction, and only iterates once one of them has been written. It is a concept that has a lot in
common with the transaction loop, except that while the transaction loop only iterates if the transaction is inconsistent,
the watcher loop always iterates.

Note that you can have multiple separate transactions within a watcher loop, which however are not guaranteed to be
consistent. For example:

8 Chapter 2. Design and Best Practices

developer.skao.int Documentation, Release 0.5.0

for watcher in config.watcher():
for txn in watcher.txn():

line = txn.get('/line_to_print')
print('A:', line)
for txn in watcher.txn():

line = txn.get('/line_to_print')
print('B:', line)

In this program we might get different results for A and B. However, the watcher does guarantee that the loop will iterate
if any of the read values have been invalidated. So if the line was deleted between the two transaction, the following
output would be generated:

A: something
B: None
A: None
B: None

After all, while transaction B had a current view of the situation the first time around, the view of transaction A became
out-of-date.

By default, the watcher only iterates if any values read by a watcher transaction has changed. This may take an arbitrary
amount of time (including infinite amount), hence we can “force” the watcher loop to go to its next iteration via two
methods. A default timeout can be set either upon initiation:

for watcher in etcd3.watcher(timeout=60):
...

or manually with the watcher.set_timeout(<new_timeout>) method. The timeout is valid for the whole life-
cycle of the watcher. Alternatively, you can set a “wake-up call”, on a loop-by-loop basis, using the
watcher.set_wake_up_at(<value_of_alarm>) method. This guarantees that the watcher will wake up at the given time
or earlier (specified as an absolute datetime object). This especially means that if the method gets called multiple times,
the watcher will wake up at the earliest of the times specified, either by timeout or by any of the wake_up calls.

2.6 New Backend Implementation

We are currently in the process of implementing a new backend using the python-etcd3 client - https://github.com/
etcd-io/etcd/releases. We found out that there are several issues with the current client (etcd3-py) and had to implement
workarounds and fixes to ensure the SDP Configuration Library keeps working. Also, this client is no longer maintained
by its developers. New client is better maintained and is expected to give an enhanced database connection performance.

More details of our investigation into the client can be found here - https://confluence.skatelescope.org/display/SE/
Investigation+of+python-etcd3+client+package

The current etcd3 backend has been renamed to etcd3_revolution1 which uses etcd3-py python client. We will continue
to support it until the new backend is ready to be replaced.

2.6. New Backend Implementation 9

https://github.com/etcd-io/etcd/releases
https://github.com/etcd-io/etcd/releases
https://confluence.skatelescope.org/display/SE/Investigation+of+python-etcd3+client+package
https://confluence.skatelescope.org/display/SE/Investigation+of+python-etcd3+client+package

developer.skao.int Documentation, Release 0.5.0

10 Chapter 2. Design and Best Practices

CHAPTER

THREE

CONFIGURATION SCHEMA

This is the schema of the configuration database, effectively the control plane of the SDP.

3.1 Execution Block

Path /eb/[eb_id]

Dynamic state information of the execution block.

Contents:

{
"eb_id": "eb-mvp01-20200425-00000",
"max_length": 21600.0,
"scan_types": [

{ "scan_type_id": "science", ... },
{ "scan_type_id": "calibration", ... }

],
"pb_realtime": ["pb-mvp01-20200425-00000", ...],
"pb_batch": [...],
"pb_receive_addresses": "pb-mvp01-20200425-00000",
"current_scan_type": "science",
"status": "SCANNING",
"scan_id": 12345,
"last_updated": "2022-08-01 10:01:12"

}

When the execution block is being executed, the status field is set to the observation state (obsState) of the subarray.
When the execution block is ended, status is set to FINISHED.

3.2 Processing Block

Path: /pb/[pb_id]

Static definition of processing block information.

Contents:

{
"pb_id": "pb-mvp01-20200425-00000",

(continues on next page)

11

developer.skao.int Documentation, Release 0.5.0

(continued from previous page)

"eb_id": "eb-mvp01-20200425-00000",
"script": {

"kind": "realtime",
"name": "vis_receive",
"version": "0.2.0"

},
"parameters": { ... }

}

There are two kinds of processing, real-time and batch (offline). Real-time processing starts immediately, as it directly
corresponds to an observation that is about to start. Batch processing will be inserted into a scheduling queue managed
by the SDP, where it will typically be executed according to resource availability.

Valid kinds are realtime and batch. The script tag identifies the processing script version as well as the required
underlying software (e.g. execution engines, processing components). ... stands for arbitrary processing script-
defined parameters.

3.2.1 Processing Block State

Path: /pb/[pb_id]/state

Dynamic state information of the processing block. If it does not exist, the processing block is still starting up.

Contents:

{
"resources_available": True,
"status": "RUNNING",
"receive_addresses": [

{ "scan_type_id": "science", ... },
{ "scan_type_id": "calibration", ... },

],
"last_updated": "2022-08-01 10:01:12"

}

Tracks the current state of the processing block. This covers both the SDP-internal state (as defined by the Execution
Control Data Model) as well as information to publish via Tango for real-time processing, such as the status and receive
addresses (for ingest).

3.2.2 Processing Block Owner

Path: /pb/[pb_id]/owner

Identifies the process executing the script. Used for leader election/lock as well as a debugging aid.

Contents:

{
"command": [
"vis_receive.py",
"pb-mvp01-20200425-00000"

],
"hostname": "pb-mvp01-20200425-00000-script-2kxfz",

(continues on next page)

12 Chapter 3. Configuration Schema

developer.skao.int Documentation, Release 0.5.0

(continued from previous page)

"pid": 1
}

3.2. Processing Block 13

developer.skao.int Documentation, Release 0.5.0

14 Chapter 3. Configuration Schema

CHAPTER

FOUR

CONFIGURATION API

4.1 High-Level API

4.2 Entities

4.2.1 Processing Block

4.2.2 Deployment

4.3 Backends

4.3.1 Common

Common functionality for implementing backends.

exception ska_sdp_config.backend.common.ConfigCollision(path: str, message: str)
Exception generated if key to create already exists.

exception ska_sdp_config.backend.common.ConfigVanished(path: str, message: str)
Exception generated if key to update that does not exist.

ska_sdp_config.backend.common.depth_of_path(path: str)→ int
Get the depth of a path, this is the number of “/” in it.

Returns
the depth

4.3.2 Etcd3 backend

4.3.3 Etcd3 backend revolution 1

4.3.4 Memory backend

15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

developer.skao.int Documentation, Release 0.5.0

16 Chapter 4. Configuration API

CHAPTER

FIVE

SDP COMMAND-LINE INTERFACE

Command Line Interface: ska-sdp

To run the CLI, you must start a shell in the console pod (assuming you have SDP deployed in Kubernetes/Minikube,
for instructions follow: SDP standalone).

kubectl exec -it ska-sdp-console-0 -n <namespace> -- bash

Once in, to access the help window of ska-sdp, run:

ska-sdp -h

5.1 Command - SDP Object matrix

This is a table/matrix of the existing commands of ska-sdp and what they can do with a specific SDP Object.

Commands:

• list

• get/watch

• create

• update/edit

• end

• delete

• import

SDP Objects:

• pb (processing block)

• script (processing script definition)

• deployment

• eb (execution block)

• controller (Tango controller device)

• subarray (Tango subarray device)

17

https://developer.skao.int/projects/ska-sdp-integration/en/latest/running/standalone.html

developer.skao.int Documentation, Release 0.5.0

pb script deployment eb other
list

• list all pbs
• list pbs for

a certain
date

• list all
script def-
initions

• list a
script def
of a spe-
cific kind
(batch or
realtime)

list all deploy-
ments

list all ebs
• if -a |

–all: list
all the
contents
of the
Config
DB

• if -v |
–values:
list keys
with
values
(or just
values)

• if –pre-
fix: list
limited
to this
prefix (for
testing
purposes)

• if con-
troller, list
the device
entry if
there is
one

• if subar-
ray, list all
subarray
device
entries

get/watch
• get the

value of a
single key

• get the
values
of all
pb-related
keys for
a single
pb-id

get the value of a
single key

get the value of a
single key

get the value of a
single key

Note: rules for
get and watch
are the same

create • create a
pb to run
a pro-
cessing
script

• if –eb:
add eb
parame-
ters for
real-time
pb

create a
key/value
pair with prefix
of /script

create a deploy-
ment of given
deployment-id,
kind, and pa-
rameters

create a
key/value
pair with prefix
of /eb

Not imple-
mented for
Tango devices

update/edit update/edit the
state of a pb
with a given
pb-id

• update
a given
key with
a given
value

• edit a
given key

• update
a given
key with
a given
value

• edit a
given key

• update
a given
key with
a given
value

• edit a
given key

• update
a Tango
device
entry

• edit a
Tango
device
entry

delete
• delete all

pbs (need
confirma-
tion)

• delete all
pb entries
for a sin-
gle pb-id

• delete
all script
defs (need
confirma-
tion)

• delete
script
def for a
single key
(kind:name:version)

• delete all
deploy-
ments
(need
confirma-
tion)

• delete
deploy-
ment for
a single
deployment-
id

• delete all
ebs (need
confirma-
tion)

• delete
eb for
a single
eb-id

• if –pre-
fix:
append
prefix in
front of
path and
perform
same

• deletion
as listed
under
SDP ob-
ject type.

end n/a n/a n/a end execution
block for a
single eb-id
(status set to
FINISHED)

if -c | –cancel:
Cancel the ex-
ecution block
(status set to
CANCELLED)

import n/a import script
definitions from
file or URL

n/a n/a

18 Chapter 5. SDP command-line interface

developer.skao.int Documentation, Release 0.5.0

5.2 Relevant environment variables

Backend-related:

SDP_CONFIG_BACKEND Database backend (default etcd3)
SDP_CONFIG_HOST Database host address (default 127.0.0.1)
SDP_CONFIG_PORT Database port (default 2379)
SDP_CONFIG_PROTOCOL Database access protocol (default http)
SDP_CONFIG_CERT Client certificate
SDP_CONFIG_USERNAME User name
SDP_CONFIG_PASSWORD User password

When running ska-sdp edit:

EDITOR Executable of an existing text editor. Recommended: vi, vim, nano (i.e.␣
→˓command line-based editors)

5.3 Usage

> ska-sdp --help

Command line utility for interacting with SKA Science Data Processor (SDP).

Usage:
ska-sdp COMMAND [options] [SDP_OBJECT] [<args>...]
ska-sdp COMMAND (-h|--help)
ska-sdp (-h|--help)

SDP Objects:
pb Interact with processing blocks
script Interact with available processing script definitions
deployment Interact with deployments
eb Interact with execution blocks
controller Interact with Tango controller device
subarray Interact with Tango subarray device

Commands:
list List information of object from the Configuration DB
get | watch Print all the information (i.e. value) of a key in the Config DB
create Create a new, raw key-value pair in the Config DB;

Run a processing script; Create a deployment
update Update a raw key value from CLI
edit Edit a raw key value from text editor
delete Delete a single key or all keys within a path from the Config DB
end Stop/Cancel execution block
import Import processing script definitions from file or URL

> ska-sdp list --help

List keys (and optionally values) within the Configuration Database.
(continues on next page)

5.2. Relevant environment variables 19

developer.skao.int Documentation, Release 0.5.0

(continued from previous page)

Usage:
ska-sdp list (-a |--all) [options]
ska-sdp list [options] pb [<date>]
ska-sdp list [options] script [<kind>]
ska-sdp list [options] (deployment|eb|controller|subarray)
ska-sdp list (-h|--help)

Arguments:
<date> Date on which the processing block(s) were created. Expected format:␣

→˓YYYYMMDD
If not provided, all pbs are listed.

<kind> Kind of processing script definition. Batch or realtime.
If not provided, all scripts are listed.

Options:
-h, --help Show this screen
-q, --quiet Cut back on unnecessary output
-a, --all List the contents of the Config DB, regardless of object type
-v, --values List all the values belonging to a key in the config db; default:␣

→˓False
--prefix=<prefix> Path prefix (if other than standard Config paths, e.g. for␣

→˓testing)

> ska-sdp (get|watch) --help

Get/Watch all information of a single key in the Configuration Database.

Usage:
ska-sdp (get|watch) [options] <key>
ska-sdp (get|watch) [options] pb <pb-id>
ska-sdp (get|watch) (-h|--help)

Arguments:
<key> Key within the Config DB.

To get the list of all keys:
ska-sdp list -a

<pb-id> Processing block id to list all entries and their values for.
Else, use key to get the value of a specific pb.

Options:
-h, --help Show this screen
-q, --quiet Cut back on unnecessary output

> ska-sdp create --help

Create SDP objects (deployment, script, eb) in the Configuration Database.
Create a processing block to run a script.

Usage:
ska-sdp create [options] pb <script> [<parameters>] [--eb=<eb-parameters>]

(continues on next page)

20 Chapter 5. SDP command-line interface

developer.skao.int Documentation, Release 0.5.0

(continued from previous page)

ska-sdp create [options] deployment <item-id> <kind> <parameters>
ska-sdp create [options] (script|eb) <item-id> <value>
ska-sdp create (-h|--help)

Arguments:
<script> Script that the processing block will run, in the format:

kind:name:version
<parameters> Optional parameters for a script, with expected format:

'{"key1": "value1", "key2": "value2"}'
For deployments, expected format:

'{"chart": <chart-name>, "values": <dict-of-values>}'
<eb-parameters> Optional eb parameters for a real-time script
<item-id> Id of the new deployment, script or eb
<kind> Kind of the new deployment (currently "helm" only)

Options:
-h, --help Show this screen
-q, --quiet Cut back on unnecessary output

Example:
ska-sdp create eb eb-test-20210524-00000 '{"test": true}'
Result in the config db:

key: /eb/eb-test-20210524-00000
value: {"test": true}

Note: You cannot create processing blocks apart from when they are called to run a␣
→˓script.

> ska-sdp (update|edit) --help

Update the value of a single key or processing block state.
Can either update from CLI, or edit via a text editor.

Usage:
ska-sdp update [options] (script|eb|deployment) <item-id> <value>
ska-sdp update [options] pb-state <item-id> <value>
ska-sdp update [options] controller <value>
ska-sdp update [options] subarray <item-id> <value>
ska-sdp edit (script|eb|deployment) <item-id>
ska-sdp edit pb-state <item-id>
ska-sdp edit controller
ska-sdp edit subarray <item-id>
ska-sdp (update|edit) (-h|--help)

Arguments:
<item-id> id of the script, eb, deployment, processing block or subarray
<value> Value to update the key/pb state with.

Options:
-h, --help Show this screen
-q, --quiet Cut back on unnecessary output

(continues on next page)

5.3. Usage 21

developer.skao.int Documentation, Release 0.5.0

(continued from previous page)

Note:
ska-sdp edit needs an environment variable defined:

EDITOR: Has to match the executable of an existing text editor
Recommended: vi, vim, nano (i.e. command line-based editors)

Example: EDITOR=vi ska-sdp edit <key>
Processing blocks cannot be changed, apart from their state.

Example:
ska-sdp edit eb eb-test-20210524-00000

--> key that's edited: /eb/eb-test-20210524-00000
ska-sdp edit script batch:test:0.0.0

--> key that's edited: /script/batch:test:0.0.0
ska-sdp edit pb-state some-pb-id-0000

--> key that's edited: /pb/some-pb-id-0000/state

> ska-sdp delete --help

Delete a key from the Configuration Database.

Usage:
ska-sdp delete (-a|--all) [options] (pb|script|eb|deployment|prefix)
ska-sdp delete [options] (pb|eb|deployment) <item-id>
ska-sdp delete [options] script <script>
ska-sdp delete (-h|--help)

Arguments:
<item-id> ID of the processing block, or deployment, or execution block
<script> Script definition to be deleted. Expected format: kind:name:version
prefix Use this "SDP Object" when deleting with a non-object-specific, user-

→˓defined prefix

Options:
-h, --help Show this screen
-q, --quiet Cut back on unnecessary output
--prefix=<prefix> Path prefix (if other than standard Config paths, e.g. for␣

→˓testing)

> ska-sdp end --help

End execution block in the configuration database.
By default it sets the status to FINISHED. If the --cancel flag is set, it sets
the status to CANCELLED.

Usage:
ska-sdp end eb <eb-id> [options]
ska-sdp end (-h|--help)

Arguments:
<eb-id> ID of execution block to end

Options:
(continues on next page)

22 Chapter 5. SDP command-line interface

developer.skao.int Documentation, Release 0.5.0

(continued from previous page)

-c, --cancel Cancel the execution block
-h, --help Show this screen
-q, --quiet Cut back on unnecessary output

> ska-sdp import --help

Import processing script definitions into the Configuration Database.

Usage:
ska-sdp import scripts [options] <file-or-url>
ska-sdp import (-h|--help)

Arguments:
<file-or-url> File or URL to import script definitions from.

Options:
-h, --help Show this screen
--sync Delete scripts not in the input

5.4 Example script definitions file

You can also use a script definitions file to import processing scripts into the Config DB. An example script definitions
file looks like

scripts:
- kind: realtime
name: test_realtime
version: 0.2.2
image: artefact.skao.int/ska-sdp-script-test-realtime:0.2.2

- kind: batch
name: test_batch
version: 0.2.2
image: artefact.skao.int/ska-sdp-script-test-batch:0.2.2

Both YAML and JSON files are accepted. After the import, you can check via .. code-block:: bash

ska-sdp list script

It will output a list of processing scripts that are available to use.

5.4. Example script definitions file 23

developer.skao.int Documentation, Release 0.5.0

24 Chapter 5. SDP command-line interface

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

25

developer.skao.int Documentation, Release 0.5.0

26 Chapter 6. Indices and tables

PYTHON MODULE INDEX

s
ska_sdp_config.backend.common, 15

27

developer.skao.int Documentation, Release 0.5.0

28 Python Module Index

INDEX

C
ConfigCollision, 15
ConfigVanished, 15

D
depth_of_path() (in module

ska_sdp_config.backend.common), 15

M
module

ska_sdp_config.backend.common, 15

S
ska_sdp_config.backend.common

module, 15

29

	Installation and Usage
	Install with pip
	Basic usage
	Command line
	Running unit tests locally

	Design and Best Practices
	Transaction Basics
	Usage Guidelines
	Wrapping transactions
	Dealing with roll-backs
	Watchers
	New Backend Implementation

	Configuration Schema
	Execution Block
	Processing Block
	Processing Block State
	Processing Block Owner

	Configuration API
	High-Level API
	Entities
	Processing Block
	Deployment

	Backends
	Common
	Etcd3 backend
	Etcd3 backend revolution 1
	Memory backend

	SDP command-line interface
	Command - SDP Object matrix
	Relevant environment variables
	Usage
	Example script definitions file

	Indices and tables
	Python Module Index
	Index

