
developer.skatelescope.org
Documentation

Release 0.1.0-beta

Marco Bartolini

Sep 14, 2023

Home

1 Requirements 3

2 Install pip 5

3 Install Poetry 7

4 Testing 9

5 Code analysis 11

6 Writing documentation 13

7 Development 15
7.1 PyCharm . 15

8 Package-name documentation 17
8.1 Subtitle . 17

9 Project-name documentation HEADING 19

i

ii

developer.skatelescope.org Documentation, Release 0.1.0-beta

Documentation Status

Briefly describe your project here

Home 1

https://developer.skatelescope.org/projects/ska-python-skeleton/en/latest/?badge=latest

developer.skatelescope.org Documentation, Release 0.1.0-beta

2 Home

CHAPTER 1

Requirements

The system used for development needs to have Python 3, pip and Poetry installed.

3

developer.skatelescope.org Documentation, Release 0.1.0-beta

4 Chapter 1. Requirements

CHAPTER 2

Install pip

Always use a virtual environment. Pipenv is now Python’s officially recommended method, but we are not using it
for installing requirements when building on the CI Pipeline. You are encouraged to use your preferred environment
isolation (i.e. pip, conda or pipenv while developing locally.

For working with Pipenv, follow these steps at the project root:

First, ensure that ~/.local/bin is in your PATH with:

> echo $PATH

In case ~/.local/bin is not part of your PATH variable, under Linux add it with:

> export PATH=~/.local/bin:$PATH

or the equivalent in your particular OS.

Then proceed to install pipenv and the required environment packages:

> pip install pipenv # if you don't have pipenv already installed on your system
> pipenv install
> pipenv shell

You will now be inside a pipenv shell with your virtual environment ready.

Use exit to exit the pipenv environment.

5

https://pipenv.readthedocs.io/en/latest/

developer.skatelescope.org Documentation, Release 0.1.0-beta

6 Chapter 2. Install pip

CHAPTER 3

Install Poetry

First we need to install Poetry: curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py
| python3 - The get-poetry.py script described here will be replaced in Poetry 1.2 by install-poetry.py. From Poetry
1.1.7 onwards, you can already use this script as described as below: curl -sSL https://install.python-poetry.org |
python3 - To manage application dependencies Poetry supports pyproject.toml config file. This .toml file have three
sections:

• [tool.poetry] — fields that describe our application, some of them are required,

• [tool.poetry.dependencies] —a list of all the required packages with version numbers,

• [tool.poetry.dev-dependencies] — a list of the required packages for development purposes: pytest for running
unit tests, black for code linting and mypy for static type check.To install all those dependencies simply run:
“poetry install”. The dependencies will be installed to the virtual environment created and managed by Poetry
by creating poetry.lock file which will resolve and install all the dependencies that are listed in pyproject.toml
file. In this way, Poetry handles both the dependencies of our application in one go.

7

developer.skatelescope.org Documentation, Release 0.1.0-beta

8 Chapter 3. Install Poetry

CHAPTER 4

Testing

• Put tests into the tests folder

• Use PyTest as the testing framework

– Reference: PyTest introduction

• Run tests with python setup.py test

– Configure PyTest in setup.py and setup.cfg

• Running the test creates the htmlcov folder

– Inside this folder a rundown of the issues found will be accessible using the index.html file

• All the tests should pass before merging the code

9

https://pytest.org
http://pythontesting.net/framework/pytest/pytest-introduction/

developer.skatelescope.org Documentation, Release 0.1.0-beta

10 Chapter 4. Testing

CHAPTER 5

Code analysis

• Use Pylint as the code analysis framework

• By default it uses the PEP8 style guide

• Use the provided code-analysis.sh script in order to run the code analysis in the module and tests

• Code analysis should be run by calling pylint ska_python_skeleton. All pertaining options reside
under the .pylintrc file.

• Code analysis should only raise document related warnings (i.e. #FIXME comments) before merging the code

11

https://www.pylint.org
https://www.python.org/dev/peps/pep-0008/

developer.skatelescope.org Documentation, Release 0.1.0-beta

12 Chapter 5. Code analysis

CHAPTER 6

Writing documentation

• The documentation generator for this project is derived from SKA’s SKA Developer Portal repository

• The documentation can be edited under ./docs/src

• If you want to include only your README.md file, create a symbolic link inside the ./docs/src directory
if the existing one does not work:

$ cd docs/src
$ ln -s ../../README.md README.md

• In order to build the documentation for this specific project, execute the following under ./docs:

$ make html

• The documentation can then be consulted by opening the file ./docs/build/html/index.html

13

https://github.com/ska-telescope/developer.skatelescope.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

14 Chapter 6. Writing documentation

CHAPTER 7

Development

7.1 PyCharm

As this project uses a src folder structure, under Preferences > Project Structure, the src folder needs to be marked
as “Sources”. That will allow the interpreter to be aware of the package from folders like tests that are outside of
src. When adding Run/Debug configurations, make sure “Add content roots to PYTHONPATH” and “Add source
roots to PYTHONPATH” are checked.

Todo:

• Insert todo’s here

15

https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure

developer.skatelescope.org Documentation, Release 0.1.0-beta

16 Chapter 7. Development

CHAPTER 8

Package-name documentation

This section describes requirements and guidelines.

8.1 Subtitle

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

8.1.1 Public API Documentation

Functions

Classes

17

developer.skatelescope.org Documentation, Release 0.1.0-beta

18 Chapter 8. Package-name documentation

CHAPTER 9

Project-name documentation HEADING

These are all the packages, functions and scripts that form part of the project.

• Package-name documentation

19

	Requirements
	Install pip
	Install Poetry
	Testing
	Code analysis
	Writing documentation
	Development
	PyCharm

	Package-name documentation
	Subtitle

	Project-name documentation HEADING

