
developer.skatelescope.org
Documentation

Release 7.4.0

Marco Bartolini

Jun 21, 2023

HOME

1 What is an Observing Script? 1

2 Context 3

3 Writing scripts for the OET 5

4 Controlling subarrays without SBs 9

5 Execution Blocks 13

6 Environment Variables 15

7 ska_oso_scripting.objects 17

8 ska_oso_scripting.functions.devicecontrol 19

9 ska_oso_scripting.functions.environment 21

10 ska_oso_scripting.functions.pdm_transforms 23

11 ska_oso_scripting.functions.messages 27

12 ska_oso_scripting.functions.sb 29

13 ska-oso-scripting 31

Python Module Index 33

Index 35

i

ii

CHAPTER

ONE

WHAT IS AN OBSERVING SCRIPT?

An observing script is some Python code whose purpose is to perform the observation defined in a Scheduling Block
(SB). In practice, there may be several observing scripts that process different parts of the SB; for example, a script to
allocate resources, a script to perform the observation; a script to deallocate resources, etc.

The SKA Project Data Model (PDM) defines the structure of Scheduling Blocks (SBs), and how an SB can be serialised
as a JSON file. The syntax of the commands and configurations required by the telescope are described in the SKA
Control Data Model (CDM). A major function of an observing script is to convert the SB PDM entity to the appropriate
set of CDM allocation and configuration entities, which form the arguments for telescope control commands.

To achieve its aims the script must send a series of commands in the correct order. The typical sequence for ‘executing’
an SB from start to finish is:

1. Command the CentralNode to allocate the required resources and instantiate the SubArrayNode. The observing
script parses the SB JSON, reading what resources are required and constructing the equivalent CDM JSON
which it then issues to the control system.

2. Using the SubArrayNode, loop through the scans required by the SB:

a. Command the SubArrayNode to configure for the scan. The script reads the subarray configurations, cal-
culates the CDM JSON required for the scan configuration, and configures the subarray accordingly.

b. Command the SubArrayNode to scan (that is, take data).

3. Tell the SubArrayNode and CentralNode that the SB is complete.

4. Command the CentralNode to release the resources in the SubArrayNode.

1

developer.skatelescope.org Documentation, Release 7.4.0

2 Chapter 1. What is an Observing Script?

CHAPTER

TWO

CONTEXT

The relationship between SBs, observing scripts, and the devices that the scripts control is shown in the figure below.

Fig. 1: Observing scripts in the context of SBs, the OET, and SKA Tango devices.

Scheduling Blocks (SBs) are the atomic units of SKA observations. Each SB defines the required resources, config-
urations, scan sequences, timing constraints, and data processing that is required for that observation. Each SB also
references an observing script - a set of Python instructions that will process the SB, translating the SB to the series of
lower-level commands and JSON configuration strings that will control the SKA telescopes and take the required data.

During standard operations, the SKA will have an observing queue with a pool of pending SBs awaiting execution. SBs
will be selected by the SKA Scheduler and sent to the Observation Execution Tool (OET) for execution. The OET is
responsible for loading and executing the scripts, retrieving the script referenced by an SB, installing any dependencies
into a Python environment and then executing the script.

The telescope appears to the script author as two Tango devices: the CentralNode is the target for commands to allocate
resources to form a SubArrayNode, and release them again when the SubArrayNode is no longer needed after the
observation; the SubArrayNode is the target for commands to configure and scan to take data during the observation.

3

developer.skatelescope.org Documentation, Release 7.4.0

4 Chapter 2. Context

CHAPTER

THREE

WRITING SCRIPTS FOR THE OET

The Observation Execution Tool (OET) can run observing scripts in a headless non-interactive manner. For efficiency,
OET script execution is split into two phases: an initialisation phase and an execution phase. Scripts that are expected
to be run by the OET should be structured to have two entry points corresponding to these two phases, as the template
below:

Listing 1: Observing script template

1 def init(subarray: int, *args, **kwargs):
2 # Called by the OET when the script is loaded and initialised by someone
3 # calling 'oet prepare'. Add your script initialisation code here. Note that
4 # the target subarray is supplied to this function as the first argument.
5 pass
6

7 def main(*args, **kwargs):
8 # Called by the OET when the prepared script is told to run by someone
9 # calling 'oet start'. Add the main body of your script to this function.

10 pass

The initialisation phase occurs when the script is loaded and the script’s init function is called (if defined) to perform
any preparation and/or initialisation. Expensive and slow operations that can be performed ahead of the main body of
script execution can be run in the initialisation phase. Typical actions performed in init are I/O intensive operations,
e.g., cloning a git repository, creating multiple Tango device proxies, subscribing to Tango events, etc. When run by
the Observation Execution Tool (OET), the init function is passed an integer subarray ID declaring which subarray
the control script is intended to control.

Subsequently, at some point a user may call oet start, requesting that the initialised script begin the main body of
its execution. When this occurs, the OET calls the script’s main function, which should performs the main function of
the script. For an observing script, this would involve the configuration and control of a subarray.

Below are two short but real example scripts. Further examples can be found in the scripts folder of this project.

3.1 Telescope Startup

Telescope startup does not require a sub-array ID so the subarray ID argument is ignored when the script is initialised.

Listing 2: Telescope start-up script

1 """
2 Example script for telescope startup
3 """

(continues on next page)

5

developer.skatelescope.org Documentation, Release 7.4.0

(continued from previous page)

4 import logging
5 import os
6

7 from ska_oso_scripting.objects import Telescope
8

9 LOG = logging.getLogger(__name__)
10 FORMAT = '%(asctime)-15s %(message)s'
11

12 logging.basicConfig(level=logging.INFO, format=FORMAT)
13

14

15 def init(subarray_id):
16 pass
17

18

19 def main(*args, **kwargs):
20 """
21 Start up telescope.
22 """
23 LOG.info(f'Running telescope start-up script in OS process {os.getpid()}')
24

25 if args:
26 LOG.warning('Got unexpected positional args: %s', args)
27 if kwargs:
28 LOG.warning('Got unexpected named args: %s', kwargs)
29

30 telescope = Telescope()
31

32 LOG.info(f'Starting telescope...')
33 telescope.on()
34

35 LOG.info('Telescope start-up script complete')

3.2 SKA-MID : Allocate Resources

Allocating resources requires communication with a TMC CentralNode and TMC SubarrayNode and targets a specific
subarray. This script’s init function pre-applies the subarray ID argument to the main function. Note that the script
does not perform any Tango calls, with the assign_resources_from_cdm() library function called to perform all
the required Tango interactions (command invocation; event subscriptions; event monitoring). Direct Tango calls could
be performed in the script if the ska-oso-scripting library does not provide the helper functions needed.

Listing 3: Resource allocation script for an SKA MID subarray

1 """
2 Example script for SB-driven observation resource allocation from file.
3 On default CDM file values (if CDM file is provided) will be overwritten
4 by values from the SB file. CDM file should be included if values are
5 added to the AssignResourcesRequest that are not available from the SB
6 """
7 import functools

(continues on next page)

6 Chapter 3. Writing scripts for the OET

developer.skatelescope.org Documentation, Release 7.4.0

(continued from previous page)

8 import logging
9 import os

10

11 from ska_oso_oet.event import topics
12 from ska_tmc_cdm.messages.central_node.assign_resources import AssignResourcesRequest
13 from ska_tmc_cdm.messages.central_node.common import DishAllocation as cdm_DishAllocation
14 from ska_tmc_cdm.schemas import CODEC as cdm_CODEC
15 from ska_oso_pdm.entities.dish.dish_allocation import DishAllocation as pdm_

→˓DishAllocation
16 from ska_oso_pdm.entities.common.sb_definition import SBDefinition
17

18 from ska_oso_pdm.schemas import CODEC as pdm_CODEC
19

20 from ska_oso_scripting.functions import devicecontrol, messages, environment
21 from ska_oso_scripting.functions import pdm_transforms
22

23 LOG = logging.getLogger(__name__)
24 FORMAT = '%(asctime)-15s %(message)s'
25

26 logging.basicConfig(level=logging.INFO, format=FORMAT)
27

28

29 def init(subarray_id: int):
30 """
31 Initialise the script, binding the sub-array ID to the script.
32 """
33 if environment.is_ska_low_environment():
34 raise environment.ExecutionEnvironmentError(expected_env="SKA-mid")
35 global main
36 main = functools.partial(_main, subarray_id)
37 LOG.info(f'Script bound to sub-array {subarray_id}')
38

39

40 def _main(subarray_id: int, sb_json, allocate_json=None):
41 """
42 Allocate resources to a target sub-array using a Scheduling Block (SB).
43

44 :param subarray_id: numeric subarray ID
45 :param sb_json: file containing SB in JSON format
46 :param allocate_json: name of configuration file
47 :return:
48 """
49 LOG.info(f'Running allocate script in OS process {os.getpid()}')
50 LOG.info(
51 f'Called with main(sb_json={sb_json}, configuration={allocate_json}, subarray_id=

→˓{subarray_id})')
52

53 if not os.path.isfile(sb_json):
54 msg = f'SB file not found: {sb_json}'
55 LOG.error(msg)
56 raise IOError(msg)
57

(continues on next page)

3.2. SKA-MID : Allocate Resources 7

developer.skatelescope.org Documentation, Release 7.4.0

(continued from previous page)

58 if allocate_json:
59 if not os.path.isfile(allocate_json):
60 msg = f'CDM file not found: {allocate_json}'
61 LOG.error(msg)
62 raise IOError(msg)
63

64 cdm_allocation_request: AssignResourcesRequest = cdm_CODEC.load_from_
→˓file(AssignResourcesRequest, allocate_json)

65 else:
66 cdm_allocation_request = AssignResourcesRequest(subarray_id, None, None)
67

68 pdm_allocation_request: SBDefinition = pdm_CODEC.load_from_file(SBDefinition, sb_
→˓json)

69

70 # Configure PDM DishAllocation to the equivalent CDM DishAllocation
71 pdm_dish = pdm_allocation_request.dish_allocations
72 cdm_dish = convert_dishallocation(pdm_dish)
73 LOG.info(f'Setting dish : {cdm_dish.receptor_ids} ')
74

75 # Configure PDM SDPConfiguration to the equivalent CDM SDPConfiguration
76 pdm_sdp_config = pdm_allocation_request.sdp_configuration
77 cdm_sdp_config = pdm_transforms.convert_sdpconfiguration_centralnode(pdm_sdp_config,
78 pdm_allocation_

→˓request.targets)
79 LOG.info(f'Setting SDP configuration for EB: {cdm_sdp_config.execution_block.eb_id}

→˓')
80

81 cdm_allocation_request.dish = cdm_dish
82 cdm_allocation_request.sdp_config = cdm_sdp_config
83

84 response = devicecontrol.assign_resources_from_cdm(subarray_id, cdm_allocation_
→˓request)

85 LOG.info(f'Resources Allocated: {response}')
86

87 messages.send_message(topics.sb.lifecycle.allocated, sb_id=pdm_allocation_request.
→˓sbd_id)

88

89 LOG.info('Allocation script complete')
90

91

92 def convert_dishallocation(pdm_config: pdm_DishAllocation) -> cdm_DishAllocation:
93 """
94 Convert a PDM DishAllocation to the equivalent CDM DishAllocation.
95 """
96

97 return cdm_DishAllocation(
98 receptor_ids=pdm_config.receptor_ids
99)

100

8 Chapter 3. Writing scripts for the OET

CHAPTER

FOUR

CONTROLLING SUBARRAYS WITHOUT SBS

At the highest level, SKA subarrays are configured and controlled by a handful of commands, some of which require
JSON control strings. Scripted control of subarrays can be achieved by creating these JSON control strings - either
directly or by using the ska-cdm-library to create the Python equivalent of the JSON control strings - and then sending
these to the subarray via SubArray methods or the appropriate ska-oso-scripting functions.

Consult the API documentation for ska_oso_scripting.objects.SubArray for details on the methods used to
assign resources to a subarray, configure a subarray, perform a scan, etc.

See ska_oso_scripting.objects.Telescope for methods used to turn the telescope on and off.

See ska_oso_scripting.functions.devicecontrol for functions you can use for high-level telescope and sub-
array control.

4.1 Tweaking configuration strings

Resource allocation and configuration require lengthy JSON strings as input. Modifying these JSON payloads is most
easily achieved by using classes from the ska-tmc-cdm project. Use of the Control Data Model (CDM) objects allows
JSON payloads to be modified via Python rather than by modifying JSON strings directly and reading/writing those
changes to a file.

In the absence of an SB, the recommended way to control the telescope is to:

1. use the ska-oso-cdm library to convert JSON contained in a file or string to the equivalent Python objects

2. perform any required modifications to the CDM objects

3. relay the instructions to the control system using the appropriate methods (assign_from_cdm(),
configure_from_cdm(), etc.)

The script below illustrates how this can be done.

1 from datetime import timedelta
2 from ska_tmc_cdm.messages.central_node.assign_resources import AssignResourcesRequest
3 from ska_tmc_cdm.messages.subarray_node.configure import ConfigureRequest
4 from ska_tmc_cdm.schemas import CODEC
5 from ska_oso_scripting.objects import SubArray, Telescope
6

7 # Create telescope object to control telescope start-up and shut-down
8 telescope = Telescope()
9 # Create sub-array object which will form the target for subsequent instructions

10 subarray = SubArray(1)
11

12 # Turn the telescope on
(continues on next page)

9

developer.skatelescope.org Documentation, Release 7.4.0

(continued from previous page)

13 telescope.on()
14

15 # Create a CDM AssignResourcesRequest object. This example loads JSON
16 # from file but a request can also be formed from a JSON string using
17 # CODEC.loads(AssignResourcesRequest, allocation_json_string)
18 request = CODEC.load_from_file(AssignResourcesRequest, file_path, timeout=None)
19 # Modify request object here if necessary, e.g.
20 request.dish.receptor_ids = ["SKA001", "SKA002", "SKA003", "SKA004"]
21 # issue resource allocation request
22 subarray.assign_from_cdm(request, timeout=None)
23

24 # Similarly, create a CDM ConfigureRequest object. Again, this could
25 # also be formed from a JSON string using
26 # CODEC.loads(ConfigureRequest, configuration_json_string)
27 request = CODEC.load_from_file(ConfigureRequest, file_path)
28 # Modify request object here if necessary, e.g.
29 request.tmc.scan_duration = timedelta(seconds=10.0)
30 # issue sub-array configuration request
31 subarray.configure_from_cdm(request)
32

33 # Execute scan
34 subarray.scan(timeout=None)
35

36 # End the Scheduling Block
37 subarray.end()
38

39 # release all sub-array resources
40 subarray.release(timeout=None)
41

42 # Set telescope to standby
43 telescope.off()

4.2 Control using static JSON

For an interaction where no modifications to the CDM are required, you can also use the assign_from_file()
and configure_from_file() methods, which will relay the JSON directly to the control system. The JSON will
be validated against the required JSON schema and any elements that are required to be unique from observation to
observation, such as scheduling block ID and processing block ID, will managed as necessary.

Note: You can also send the raw JSON directly to the control system without performing any validation or ID updates
by setting with_processing=False for these methods. However, it is then your responsibility to ensure that the CDM
payloads are valid!

from ska_oso_scripting.objects import SubArray, Telescope

Create telescope object to control telescope start-up and shut-down
telescope = Telescope()

(continues on next page)

10 Chapter 4. Controlling subarrays without SBs

developer.skatelescope.org Documentation, Release 7.4.0

(continued from previous page)

Turn the telescope on
telescope.on()

Create domain object for the sub-array the commands will be sent to
subarray = SubArray(1)

Allocate resources, provide a path to a file with allocation JSON
subarray.assign_from_file(path_to_allocation_json_file, timeout=None)

Configure sub-array, provide a path to a file with configuration JSON
subarray.configure_from_file(configuration_json_file, scan_duration=10.0, timeout=None)

Execute scan sub-array was configured for
subarray.scan()

End the Scheduling Block
subarray.end()

Set telescope to standby
telescope.off()

4.2. Control using static JSON 11

developer.skatelescope.org Documentation, Release 7.4.0

12 Chapter 4. Controlling subarrays without SBs

CHAPTER

FIVE

EXECUTION BLOCKS

5.1 What is an Execution Block?

Execution Blocks (EBs) are a record of the requests to and responses from the telescope during an observing session,
and provide a way to link the data to this observing session. For more information and a sample of an EB, see the
documentation for the PDM project, which is where the EB is defined.

EBs are stored in the OSO Data Archive (ODA), and the ODA application provides custom API resources for creating
and updating EBs. The ODA also provides a client with functions to call this create API and a decorator which will
send the decorated function request and response to the endpoint to update the EB. See the documentation for the ODA
project for more details.

The client is implemented in a way that minimises the visibility of the EB lifecycle, however the script author or
notebook user should be aware of the purpose of an EB and should follow the instructions below so ensure the session
is properly captured in an EB.

5.2 Capturing an observing session in an Execution Block

An observing session typically means either the Scheduling Block driven execution of observing scripts defined in this
project or elsewhere, or a Jupyter notebook session where a user is interacting with the telescope, either through the
functions in this project or at a lower level.

In either case, the same process for capturing data in an Execution Block should be followed:

1. Set the ODA_URI environment variable to the location of a running instance of the ODA, eg
ODA_URI=https://k8s.stfc.skao.int/button-dev-ska-db-oda/api/v1/

2. At the start of the session or script, call the create_eb from the ODA EB client discussed above

from ska-oso-scripting import create_eb

create_eb()

3. Functions that are decorated with @capture_request_response will send the request_responses to the ODA
with the relevant eb_id. The public functions in ska_oso_scripting.functions.devicecontrol are already decorated.
To capture custom function calls, the decorator can either imported and added to the function definition, or
functions calls can be decorated on the fly during the execution in the session:

from ska-oso-scripting import capture_request_response

Decorate the function in the source code
(continues on next page)

13

https://developer.skao.int/projects/ska-oso-pdm/en/latest/execution_blocks.html
https://developer.skao.int/projects/ska-db-oda/en/latest/client/ebclient.html
https://developer.skao.int/projects/ska-db-oda/en/latest/client/ebclient.html
https://developer.skao.int/projects/ska-oso-scripting/en/latest/package/functions/devicecontrol.html#module-ska_oso_scripting.functions.devicecontrol

developer.skatelescope.org Documentation, Release 7.4.0

(continued from previous page)

@capture_request_response
def my_function_to_record(args):

...

OR 'decorate' the function at runtime when calling
my_response = capture_request_response(my_function_to_record)(args)

14 Chapter 5. Execution Blocks

CHAPTER

SIX

ENVIRONMENT VARIABLES

Environment variables are used by ska-oso-scripting to define the execution environment and which Tango devices
should be controlled. This in turn modifies the behaviour of the code, giving different behaviour depending on whether
the code is running in an SKA MID environment (default) or an SKA LOW environment. For example, when configured
for SKA MID, connections to a subarray will connect to an SKA MID subarray, and validation code will reject CDM
payloads intended for SKA LOW.

Table 1: Environment variables recognised by ska-oso-scripting
Variable Default value Description
SKA_TELESCOPE skamid Controls the behaviour of telescope-specific functions to

expect SKA LOW (skalow) or SKA MID (skamid). If
the environment variable is not recognised, skamid will
be assumed.

CENTRALNODE_FQDN ska_mid/tm_central/
central_node

The fully-qualified domain name (FQDN) of the TMC
CentralNode Tango device. If left unset, an appropriate
FQDN for SKA MID will be used.

SUBARRAYNODE_FQDN_PREFIXska_mid/
tm_subarray_node

Prefix to use when constructing the FQDN for a TMC
SubarrayNode Tango device. If left unset, an apprpriate
FQDN prefix for SKA MID will be used.

ODA_URI null The base API location for an instance of the ODA, to
be used to create and update Execution Blocks. For ex-
ample, https://k8s.stfc.skao.int/button-dev-ska-db-oda/
api/v1/

15

https://k8s.stfc.skao.int/button-dev-ska-db-oda/api/v1/
https://k8s.stfc.skao.int/button-dev-ska-db-oda/api/v1/

developer.skatelescope.org Documentation, Release 7.4.0

16 Chapter 6. Environment Variables

CHAPTER

SEVEN

SKA_OSO_SCRIPTING.OBJECTS

17

developer.skatelescope.org Documentation, Release 7.4.0

18 Chapter 7. ska_oso_scripting.objects

CHAPTER

EIGHT

SKA_OSO_SCRIPTING.FUNCTIONS.DEVICECONTROL

19

developer.skatelescope.org Documentation, Release 7.4.0

20 Chapter 8. ska_oso_scripting.functions.devicecontrol

CHAPTER

NINE

SKA_OSO_SCRIPTING.FUNCTIONS.ENVIRONMENT

The ska_oso_scripting.functions.environment module contains code used to identify the execution environment and to
verify commands are appropriate to that environment.

exception ska_oso_scripting.functions.environment.ExecutionEnvironmentError(expected_env,
msg='Telescope
environment
required by script
does not match
deployment')

Error raised when execution environment does not match the targeted telescope.

ska_oso_scripting.functions.environment.check_environment_for_consistency(request_json: str)
→ None

Confirm that the request is correct for the current environment, raising an ExecutionEnvironmentError if there
is a mismatch.

Parameters
request_json – The JSON control string to be tested

ska_oso_scripting.functions.environment.is_ska_low_environment()→ bool
Return True if execution environment is identified as SKA LOW.

Returns
True if SKA LOW

ska_oso_scripting.functions.environment.is_ska_mid_environment()→ bool
Return True if execution environment is identified as SKA MID

Returns
True if SKA MID

21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

developer.skatelescope.org Documentation, Release 7.4.0

22 Chapter 9. ska_oso_scripting.functions.environment

CHAPTER

TEN

SKA_OSO_SCRIPTING.FUNCTIONS.PDM_TRANSFORMS

The pdm_transforms module contains code to transform Project Data Model (PDM) entities to Configuration Data
Model (CDM) entities. The pdm_transforms code is called by observing scripts to convert the PDM Scheduling Block
to the equivalent CDM configurations, which are then sent to TMC devices to control the telescope.

ska_oso_scripting.functions.pdm_transforms.pdm_transforms.convert_cspconfiguration(pdm_config:
ska_oso_pdm.entities.csp.common.CSPConfiguration,
re-
ceiver_band:
ska_oso_pdm.entities.dish.dish_configuration.ReceiverBand)
→
ska_tmc_cdm.messages.subarray_node.configure.csp.CSPConfiguration

Convert a PDM CSPConfiguration to the equivalent CDM CSPConfiguration.

Parameters

• pdm_config – The PDM configuration to convert

• receiver_band – PDM receiver band to set for this configuration

Returns
the equivalent CDM configuration

ska_oso_scripting.functions.pdm_transforms.pdm_transforms.convert_mccs_configuration(mccs_allocation:
ska_oso_pdm.entities.mccs.mccs_allocation.MCCSAllocation,
tar-
get_beam_configurations:
List[ska_oso_pdm.entities.mccs.target_beam_configuration.TargetBeamConfiguration],
tar-
gets:
List[ska_oso_pdm.entities.common.target.Target],
sub-
ar-
ray_beam_configurations:
List[ska_oso_pdm.entities.mccs.subarray_beam_configuration.SubarrayBeamConfiguration],
sub-
ar-
ray_beam_map:
Map-
ping[ska_oso_pdm.entities.mccs.mccs_allocation.SubarrayBeamID,
int])
→
ska_tmc_cdm.messages.subarray_node.configure.mccs.MCCSConfiguration

Convert PDM Low SB TargetBeamConfiguration list to a CDM MCCSConfiguration.

23

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#int

developer.skatelescope.org Documentation, Release 7.4.0

Other SB elements required are the Target list and SubarrayBeamConfiguration list, which are referenced by the
TargetBeamConfigurations.

The MCCSAllocation is also needed for its list of station_ids.

Parameters

• mccs_allocation – The PDM MCCSAllocation

• target_beam_configurations – The PDM TargetBeamConfiguration list

• targets – The PDM Target list

• subarray_beam_configurations – The PDM SubarrayBeamConfiguration list

• subarray_beam_map – mapping of offline beam IDs to online beam IDs

Returns
the required CDM MCCSConfiguration

ska_oso_scripting.functions.pdm_transforms.pdm_transforms.convert_mccsallocation(mccsallocation:
ska_oso_pdm.entities.mccs.mccs_allocation.MCCSAllocation,
subar-
ray_beam_map:
Map-
ping[ska_oso_pdm.entities.mccs.mccs_allocation.SubarrayBeamID,
int],
union:
bool =
False)→
List[ska_tmc_cdm.messages.central_node.mccs.MCCSAllocate]

Convert a PDM Low MCCSAllocation to a list of CDM MCCSAllocate instances, one CDM instance per beam.

At the time of writing (PI10), MCCS requires subarray beams to be allocated one at a time, that is, one subarray
beam per allocation request. This behaviour can be toggled by setting the union argument. When union is set to
True, this function returns a list of CDM instances, each instance narrowed to configure a single beam.

Parameters

• mccsallocation – The PDM MCCSAllocation

• subarray_beam_map – mapping of offline beam IDs to online beam IDs

• union – True to create one multi-beam request, False to create n per-beam requests

Returns
equivalent CDM instances

ska_oso_scripting.functions.pdm_transforms.pdm_transforms.convert_tmcconfiguration(scan_definition:
ska_oso_pdm.entities.common.scan_definition.ScanDefinition)
→
ska_tmc_cdm.messages.subarray_node.configure.tmc.TMCConfiguration

Convert a PDM ScanDefinition to the equivalent TMC configuration

ska_oso_scripting.functions.pdm_transforms.pdm_transforms.convert_pointingconfiguration(target:
ska_oso_pdm.entities.common.target.Target)
→
ska_tmc_cdm.messages.subarray_node.configure.PointingConfiguration

Convert a PDM Target to the equivalent TMC configuration

24 Chapter 10. ska_oso_scripting.functions.pdm_transforms

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List

developer.skatelescope.org Documentation, Release 7.4.0

ska_oso_scripting.functions.pdm_transforms.pdm_transforms.convert_dishconfiguration(dish_configuration:
ska_oso_pdm.entities.dish.dish_configuration.DishConfiguration)
→
ska_tmc_cdm.messages.subarray_node.configure.DishConfiguration

Convert a PDM Dish configuration to a CDM Dish Configuration

The pdm_transforms.sdp module contains code to transform SDP Project Data Model (PDM) entities to Configuration
Data Model (CDM) entities.

ska_oso_scripting.functions.pdm_transforms.sdp.convert_sdpconfiguration_centralnode(pdm_config:
ska_oso_pdm.entities.sdp.SDPConfiguration,
pdm_targets:
List[ska_oso_pdm.entities.common.target.Target])
→
ska_tmc_cdm.messages.central_node.sdp.SDPConfiguration

Convert a PDM SDPConfiguration to the equivalent CDM SDPConfiguration.

In a SchedulingBlockDefinition, Targets are recorded exactly once as PDM Targets separate and external to any
SDPConfiguration. Targets to be inserted into the output SDPConfiguration should be passed to this function.

Parameters

• pdm_config – the SDPConfiguration to convert

• pdm_targets – Targets to inject into output SDP configuration

Raises
TypeError – if pdm_config is not an SDPConfiguration

ska_oso_scripting.functions.pdm_transforms.sdp.convert_sdpconfiguration_subarraynode(scan_definition:
ska_oso_pdm.entities.common.scan_definition.ScanDefinition)
→
ska_tmc_cdm.messages.subarray_node.configure.sdp.SDPConfiguration

Convert a PDM Scan Definition to an SDP Configuration aspect of a TMC SubArrayNode.Configure call

25

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/exceptions.html#TypeError

developer.skatelescope.org Documentation, Release 7.4.0

26 Chapter 10. ska_oso_scripting.functions.pdm_transforms

CHAPTER

ELEVEN

SKA_OSO_SCRIPTING.FUNCTIONS.MESSAGES

The ska_oso_scripting.functions.messages module contains functions that scripts can use to announce events and mes-
sages to the outside world.

ska_oso_scripting.functions.messages.send_message(topic, **kwargs)
Helper function to send messages via pypubsub.

Parameters

• topic – topic matching a topic in oet.event.topics

• kwargs – kwargs to be included in message

ska_oso_scripting.functions.messages.publish_event_message(topic=ska_oso_oet.event.topics.user.script.announce,
**kwargs)

publish pypubsub event messages, OET scripts will be using this method to publish a freeform messages to an
unknown listener.

Parameters

• topic – message topic

• kwargs – any metadata associated with pypubsub message

27

developer.skatelescope.org Documentation, Release 7.4.0

28 Chapter 11. ska_oso_scripting.functions.messages

CHAPTER

TWELVE

SKA_OSO_SCRIPTING.FUNCTIONS.SB

ska_oso_scripting.functions.sb.create_sbi(sbd:
ska_oso_pdm.entities.common.sb_definition.SBDefinition)→
ska_oso_pdm.entities.common.sb_definition.SBDefinition

Create a Scheduling Block Instance from a Scheduling Block Definition.

Currently, an SBI is a snapshot of an SBD but with EB and PB IDs replaced.

ska_oso_scripting.functions.sb.load_sbd(path: str)→
ska_oso_pdm.entities.common.sb_definition.SBDefinition

Load an SBDefinition from a JSON file on disk. :param path: path to SBD. :return: SBDefinition object

ska_oso_scripting.functions.sb.save_sbi(sbi: ska_oso_pdm.entities.common.sb_definition.SBDefinition,
path: str)

Save an SBI to disk. Saves an SBI (really, an SBD but with fixed IDs) the specified path. :param sbi: SBI to
serialise :param path: output file to write

29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

developer.skatelescope.org Documentation, Release 7.4.0

30 Chapter 12. ska_oso_scripting.functions.sb

CHAPTER

THIRTEEN

SKA-OSO-SCRIPTING

13.1 Overview

The ska-oso-scripting project provides a Python library intended to be useful for engineers and scientists writing ob-
serving scripts and engineering tests. The helper functions and classes contained in the library support the high-level
configuration and control of an SKA subarray, hiding the low-level details of how the related Tango devices are con-
trolled from the script author.

This library provides a simple object-oriented interface and a functional interface, located in ska_oso_scripting.
objects and ska_oso_scripting.functions respectively. The objects are recommended as the most user-friendly
option but the functions can also be called if preferred. Regardless, the same code is called at the lowest level: object
methods call ‘public’ scripting functions, which then call ‘private’ lower-level scripting functions held in submodules
of devicecontrol.

Observing scripts can be run interactively in a Jupyter notebook, or remotely executed by the Observation Execution
Tool (OET). For documentation on how to use OET to run observing scripts, see the ska-oso-oet project documentation.

A major use case for the ska-oso-scripting library is to support the execution of Scheduling Blocks (SBs). Hence,
in addition to Tango device control, much of the ska-oso-scripting library is concerned with translating SBs into the
equivalent JSON configuration and control strings and with the issuing of commands to TMC Tango devices at the
appropriate times.

13.2 Quickstart

Like all SKA projects, this project uses containers for development and testing so that the build environment, test
environment and test results are reproducible and independent of the host environment. make is used to provide a
consistent UI.

Build a new container image for the OET with:

make oci-build

Execute the test suite with:

make python-test

Format and lint the Python code with:

make python-format
make python-lint

31

developer.skatelescope.org Documentation, Release 7.4.0

32 Chapter 13. ska-oso-scripting

PYTHON MODULE INDEX

s
ska_oso_scripting.functions.environment, 21
ska_oso_scripting.functions.messages, 27
ska_oso_scripting.functions.pdm_transforms.pdm_transforms,

23
ska_oso_scripting.functions.pdm_transforms.sdp,

25
ska_oso_scripting.functions.sb, 29

33

developer.skatelescope.org Documentation, Release 7.4.0

34 Python Module Index

INDEX

C
check_environment_for_consistency() (in module

ska_oso_scripting.functions.environment), 21
convert_cspconfiguration() (in module

ska_oso_scripting.functions.pdm_transforms.pdm_transforms),
23

convert_dishconfiguration() (in module
ska_oso_scripting.functions.pdm_transforms.pdm_transforms),
24

convert_mccs_configuration() (in module
ska_oso_scripting.functions.pdm_transforms.pdm_transforms),
23

convert_mccsallocation() (in module
ska_oso_scripting.functions.pdm_transforms.pdm_transforms),
24

convert_pointingconfiguration() (in module
ska_oso_scripting.functions.pdm_transforms.pdm_transforms),
24

convert_sdpconfiguration_centralnode() (in
module ska_oso_scripting.functions.pdm_transforms.sdp),
25

convert_sdpconfiguration_subarraynode() (in
module ska_oso_scripting.functions.pdm_transforms.sdp),
25

convert_tmcconfiguration() (in module
ska_oso_scripting.functions.pdm_transforms.pdm_transforms),
24

create_sbi() (in module
ska_oso_scripting.functions.sb), 29

E
ExecutionEnvironmentError, 21

I
is_ska_low_environment() (in module

ska_oso_scripting.functions.environment),
21

is_ska_mid_environment() (in module
ska_oso_scripting.functions.environment),
21

L
load_sbd() (in module ska_oso_scripting.functions.sb),

29

M
module

ska_oso_scripting.functions.environment,
21

ska_oso_scripting.functions.messages, 27
ska_oso_scripting.functions.pdm_transforms.pdm_transforms,

23
ska_oso_scripting.functions.pdm_transforms.sdp,

25
ska_oso_scripting.functions.sb, 29

P
publish_event_message() (in module

ska_oso_scripting.functions.messages), 27

S
save_sbi() (in module ska_oso_scripting.functions.sb),

29
send_message() (in module

ska_oso_scripting.functions.messages), 27
ska_oso_scripting.functions.environment

module, 21
ska_oso_scripting.functions.messages

module, 27
ska_oso_scripting.functions.pdm_transforms.pdm_transforms

module, 23
ska_oso_scripting.functions.pdm_transforms.sdp

module, 25
ska_oso_scripting.functions.sb

module, 29

35

	What is an Observing Script?
	Context
	Writing scripts for the OET
	Telescope Startup
	SKA-MID : Allocate Resources

	Controlling subarrays without SBs
	Tweaking configuration strings
	Control using static JSON

	Execution Blocks
	What is an Execution Block?
	Capturing an observing session in an Execution Block

	Environment Variables
	ska_oso_scripting.objects
	ska_oso_scripting.functions.devicecontrol
	ska_oso_scripting.functions.environment
	ska_oso_scripting.functions.pdm_transforms
	ska_oso_scripting.functions.messages
	ska_oso_scripting.functions.sb
	ska-oso-scripting
	Overview
	Quickstart

	Python Module Index
	Index

