

Observation Execution Tool

Project description

The ska-oso-oet project contains the code for the Observation Execution
Tool (OET), the application which provides on-demand Python script execution
for the SKA.

Overview

The core of the OET is a script execution engine which runs a requested script
in a child Python process. The engine supervises script execution, in that it
can terminate the script at any time when requested, and captures the output
and/or errors generated by the script for inspection by a (remote) client.

A REST layer makes the Python API for the script execution engine available
via REST over HTTP. This project also contains a command line client to allow
users to submit script execution requests to a remote OET backend.

The REST layer is made up of two components that work together to provide the
remote script execution functionality:

	The OET REST server maintains a list of the scripts that have been
loaded and their current state. The server implements the interface specified
by the OET Module View: REST API.

	The OET OET command line tool provides a Command Line Interface (CLI) to the
OET backend.

More details on the OET architecture can be found in C&C view: OET client and OET backend.

Note

SKA control scripts are not packaged as part of this project. The repository
of observing scripts executed by the OET can be found in the
ska-oso-scripting [https://developer.skatelescope.org/projects/ska-oso-scripting/en/latest/index.html]
project.

Quickstart

Build a new OET image:

make oci-build

Execute the test suite and lint the project with:

make python-test
make python-lint

Format and lint on commit

We recommend you use pre-commit [https://pre-commit.com] to automatically
format and lint your commits. The commands below should be enough to get you
up and running. Reference the official documentation [https://pre-commit.com/#install]
for full installation details.

Pre-commit installation on Linux

install pre-commit
sudo pip3 install pre-commit

install git hook scripts
pre-commit install

uninstall git hook scripts
pre-commit uninstall

Pre-commit installation on MacOS

The commands below were tested on MacOS 10.15.

install pre-commit
pip3 install --user pre-commit

install git hook scripts
~/Library/Python/3.8/bin/pre-commit install

uninstall git hook scripts
~/Library/Python/3.8/bin/pre-commit uninstall

Makefile targets

This project extends the standard SKA Make targets with a few additional Make
targets that can be useful for developers. These targets are:

	Makefile target

	Description

	dev-up

	deploy the OET using the current developer
image, exposing REST ingress on the host

	dev-down

	tear down the developer OET deployment

	rest

	start the OET backend in a Docker container

	diagrams

	recreate PlantUML diagrams whose source has
been modified

	k8s-chart-test

	run helm chart unit tests
(note: requires helm unittest plugin:
https://github.com/quintush/helm-unittest)

	help

	show a summary of the makefile targets above

Local development with k8s

OET REST server can be deployed locally using Helm and Kubernetes and OET CLI
OET command line tool can be used to communicate with the server. OET CLI is
installed as part of the Poetry virtual environment (see README) or can be
used inside a running OET container/pod.

If using OET CLI within Poetry virtual environment these steps are needed
for the CLI to access the REST server:

	set rest.ingress.enabled to true in charts/ska-oso-oet/values.yaml

	set OET_REST_URI environment variable with export OET_REST_URI=http://<minikube IP>/<kube namespace>/ska-oso-oet/api/v1.0

To deploy OET REST server run

make k8s-chart-install && make k8s-wait

Feature flags

OET feature flags are configured via environment variables and configuration
files. The configuration file, ska_oso_oet.ini, can be located either in the user’s
home directory, or the root of the installation folder.

Feature flags are read in this order:

	environment variable;

	ska_oso_oet.ini configuration file;

	default flag value as specified in OET code.

No feature flags are available at this time.

OET command line tool

The oet command can be used to control a remote OET deployment [1].
The oet command has two sub-commands, procedure and activity.

oet procedure commands are used to control individual observing scripts,
which includes loading and starting and stopping script execution.

oet activity commands are used to execute more general activities on the
telescope, for example running the allocate activity on SB with ID xxx.

See Procedure and Activity sections for further details on commands available
for each of the approaches.

General help and specific help is available at the command line by adding the
--help argument. For example:

get a general overview of the OET CLI
$ oet procedure --help
$ oet activity --help

get specific help on the oet create command
$ oet procedure create --help

get specific help on the oet describe command
$ oet activity describe --help

Installation

The OET command line tool is available as the oet command at the terminal.
The OET CLI is packaged separately so it can be installed without OET backend
dependencies, such as PyTango. It can be installed into a Python environment,
and configured to access a remote OET deployment as detailed below:

$ pip install --upgrade ska_oso_oet_client

By default, the OET image has the CLI installed, meaning the CLI is accessible
from inside the running OET pod.

Configuration

The address of the remote OET backend can be specified at the command line
via the server-url argument, or set session-wide by setting the
OET_REST_URI environment variable, e.g.,

provide the server URL when running the command, e.g.
$ oet --server-url=http://my-oet-deployment.com:5000/api/v1.0 procedure list

alternatively, set the server URL for a session by defining an environment variable
$ export OET_REST_URI=http://my-oet-deployment.com:5000/api/v1.0
$ oet procedure list
$ oet activity describe
$ oet procedure create ...

By default, the client assumes it is operating within a SKAMPI environment
and attempts to connect to a REST server using the default REST service name
of http://ska-oso-oet-rest:5000/api/v1.0. If running the OET
client within a SKAMPI pod, the OET_REST_URI should automatically be set.

Commands

Common

The oet CLI tool has listen command which is neither activity or procedure specific.
It is used to observe OET messages and script messages from, procedure, activity and several
other topics.

	OET CLI action

	Parameters

	Default

	Description

	Listen

	server-url

	See Configuration section

	Get real times scripts events

Get a real time delivery of events
published by oet server/scripts

	
	

Examples

A ‘listen’ command will give the real time delivery of oet events published by scripts:

$ oet listen

event: request.procedure.list
data: args=() kwargs={'msg_src': 'FlaskWorker', 'request_id': 1604056049.4846392, 'pids': None}

event: procedure.pool.list
data: args=() kwargs={'msg_src': 'SESWorker', 'request_id': 1604056049.4846392, 'result': []}

event: activity.pool.list
data: args=() kwargs={'msg_src': 'ActivityWorker', 'request_id': 1604056078.4847652, 'result': []}

event: request.procedure.create
data: args=() kwargs={'msg_src': 'FlaskWorker', 'request_id': 1604056247.0666442, 'cmd': PrepareProcessCommand(script_uri='file://scripts/eventbus.py', init_args=<ProcedureInput(, subarray_id=1)>)}

event: procedure.lifecycle.created
data: args=() kwargs={'msg_src': 'SESWorker', 'request_id': 1604056247.0666442, 'result': ProcedureSummary(id=1, script_uri='file://scripts/eventbus.py', script_args={'init': <ProcedureInput(, subarray_id=1)>, 'run': <ProcedureInput(,)>}, history=<ProcessHistory(process_states=[(ProcedureState.READY, 1604056247.713874)], stacktrace=None)>, state=<ProcedureState.READY: 1>)}

Press Control-c to exit from oet listen.

Procedure

Using oet procedure, a remote OET deployment can be instructed to:

	load a Python script using oet procedure create;

	run a function contained in the Python script using oet procedure start;

	stop a running Python function using oet procedure stop;

In addition, the current and historic state of Python processes running on
the backend can be inspected with

	oet procedure list to list all scripts that are prepared to run or are
currently running;

	oet procedure describe to inspect the current and historic state of a
specific process.

The commands available via oet procedure are described below.

	OET CLI action

	Parameters

	Default

	Description

	create

	server-url

	See Configuration section

	Prepare a new procedure

Load the requested script and
prepare it for execution.

Arguments provided here are passed
to the script init function, if
defined

OET maintains record of 10 newest
scripts which means creating 11th
script will remove the oldest
script from the record.

	script-uri

	None

	args

	None

	kwargs

	--subarray_id=1
--git_repo=
“http://gitlab.com/ska-telescope/oso/ska-oso-scripting”
--git_branch=”master”
--git_commit=None
--create_env=False

	list

	server-url

	See Configuration section

	List procedures

Return info on the collection of 10
newest procedures, or info on the
one specified by process ID (pid)

	pid

	None

	start

	server-url

	See Configuration section

	Start a Procedure Executing

Start a process executing
the procedure specified by process
ID (pid) or, if none is specified
start the last one loaded.

Only one procedure can be executing
at any time.

listen flag is set to True by
default which means that events are
shown on the command line unless
is is explicitly set to False.

	pid

	None

	args

	None

	kwargs

	None

	listen

	True

	stop

	server-url

	See Configuration section

	Stop Procedure Execution

Stop a running process executing
the procedure specified by process
ID (pid) or, if none is specified,
stop the currently running process.

If run_abort flag is True, OET will
send Abort command to the SubArray
as part of script termination.

	pid

	None

	run_abort

	True

	describe

	server-url

	See Configuration section

	Investigate a procedure

Displays the call arguments, state
history and, if the procedure
failed, the stack trace of a
specified process ID (pid). If no
pid is specified describe the last
process created.

	pid

	None

In the table ‘args’ refers to parameters specified by position on the command line, ‘kwargs’ to
those specified by name e.g. –myparam=12.

Examples

This section runs through an example session in which we will
load two new ‘Procedures’ [2] and then run one of them.
First we load the procedure, and see the backend report that
it is creating a process with ID=1 to run the script.

$ oet procedure create file://test.py 'hello' --verbose=true

 ID Script Creation time State
---- --------------- ------------------- -------
 1 file://test.py 2020-09-30 10:30:12 CREATING

Note the use of both positional and keyword/value arguments for the
procedure on the command line. Now create a second procedure:

$ oet procedure create file://test2.py 'goodbye'

 ID Script Creation time State
---- --------------- ------------------- -------
 2 file://test2.py 2020-09-30 10:35:12 CREATING

Now create a third procedure that will be pulled from git:

$ oet procedure create git://test3.py --git_repo="http://foo.git" --git_branch="test" --create_env=True

 ID Script Creation time State
---- --------------- ------------------- -------
 3 git://test3.py 2020-09-30 10:40:12 CREATING

We can check the state of the procedures currently loaded:

$ oet procedure list

 ID Script Creation time State
---- --------------- ------------------- -------
 1 file://test.py 2020-09-30 10:30:12 READY
 2 file://test2.py 2020-09-30 10:35:12 READY
 3 git://test3.py 2020-09-30 10:40:12 READY

Alternatively, we could check the state of procedure 2 alone:

$ oet procedure list --pid=2

 ID Script Creation time State
---- --------------- ------------------- -------
 2 file://test2.py 2020-09-30 10:35:12 READY

Now that we have our procedures loaded we can start one of them running.
At this point we supply the ID of the procedure to run, and
some runtime arguments to pass to it if required. The backend responds
with the new status of the procedure.

$ oet procedure start --pid=2 'bob' --simulate=false

 ID Script Creation time State
---- --------------- ------------------- -------
 2 file://test2.py 2020-09-30 10:35:12 RUNNING

An oet procedure list command also shows the updated status of procedure #2:

$ oet procedure list

 ID Script Creation time State
---- --------------- ------------------- -------
 1 file://test.py 2020-09-30 10:30:12 READY
 2 file://test2.py 2020-09-30 10:35:12 RUNNING
 3 git://test3.py 2020-09-30 10:40:12 READY

An oet procedure describe command will give further detail on a procedure, no
matter its state.

$ oet procedure describe --pid=2

 ID Script URI
 ---- --------------- ---
 2 file://test2.py http://0.0.0.0:5000/api/v1.0/procedures/2

 Time State
 -------------------------- -------
 2020-09-30 10:19:38.011584 CREATING
 2020-09-30 10:19:38.016266 IDLE
 2020-09-30 10:19:38.017883 LOADING
 2020-09-30 10:19:38.018880 IDLE
 2020-09-30 10:19:38.019006 RUNNING 1
 2020-09-30 10:19:38.019021 READY
 2020-09-30 10:35:12.605270 RUNNING 2

 Index Method Arguments Keyword Arguments
 -------- --------- ----------- -------------------
 1 init ['goodbye'] {'subarray_id': 1}
 2 run ['bob'] {'simulate': false}

Describing a script from git shows additional information on the repository:

$ oet procedure describe --pid=3

 ID Script URI
 ---- --------------- ---
 3 git://test3.py http://0.0.0.0:5000/api/v1.0/procedures/3

 Time State
 -------------------------- -------
 2020-09-30 10:40:12.435305 CREATING
 2020-09-30 10:40:12.435332 IDLE
 2020-09-30 10:40:12.435364 LOADING
 2020-09-30 10:40:12.435401 IDLE
 2020-09-30 10:40:12.435433 RUNNING 1
 2020-09-30 10:40:12.435642 READY

Index Method Arguments Keyword Arguments
-------- -------- ---------- -------------------
 1 init [] {'subarray_id': 1}
 2 run [] {}

 Repository Branch Commit
 --------------- ------- -------------------
 http://foo.git test

If the procedure failed, then the stack trace will also be displayed.

Example session in a SKAMPI environment

From a shell, you can use the ‘oet procedure’ command to trigger remote execution
of a full observation, e.g.,

create process for telescope start-up and execute it
oet procedure create file:///scripts/startup.py
oet procedure start

create process for resource allocation script
oet procedure create file:///scripts/allocate_from_file_sb.py --subarray_id=3
oet procedure start scripts/example_sb.json

create process for configure/scan script
oet procedure create file:///scripts/observe_sb.py --subarray_id=3
run the script, specifying scheduling block JSON which defines
the configurations, and the order and number of scans
oet procedure start scripts/example_sb.json

create process for resource deallocation script
oet procedure create file:///scripts/deallocate.py --subarray_id=3
run with no arguments, which requests deallocation of all resources
oet procedure start

create process for telescope standby script
oet procedure create file:///scripts/standby.py
oet procedure start

Activity

Using oet activity, a remote OET deployment can be instructed to:

	execute a observing activity of a Scheduling Block with oet activity run

In addition, the current and historic state of Activities can be inspected with

	oet activity list to list all activities that have been started;

	oet activity describe to inspect the current and historic state of a
specific activity.

The commands available via oet activity are described below.

	OET CLI action

	Parameters

	Default

	Description

	run

	server-url

	See Configuration section

	Run an activity of an SB

Create and run a script referenced
by an activity defined in an SB.
The activity-name and sbd-id are
mandatory arguments. script-args is
a dictionary defining function name
as a key (e.g. ‘init’) and any
keyword arguments to be passed for
the function on top of arguments
present in the SB. Only keyword args
are currently allowed.

preparep-only should be set to False
if the script referred to by SB and
activity is not to be run yet. To
start a prepared script, use the
oet procedure commands.

create-env flag should be set to
True if script referred to by SB is
a Git script and requires a non-
default environment to run.

	activity-name

	None

	sbd-id

	None

	script-args

	None

	prepare-only

	False

	create-env

	False

	listen

	True

	list

	server-url

	See Configuration section

	List activities

Return info on the collection of 10
newest activities, or info on the
one specified by activity ID (aid)

	aid

	None

	describe

	server-url

	See note above

	Investigate an activity

Displays the script arguments, and
the state history of a specified
activity ID (aid). If no aid is
specified describe the last activity
created.

	aid

	None

Examples

This section runs through an example session in which we will
run an activity with arguments to the script. We will also demonstrate
the more advanced use of controlling activity execution with additional
oet procedure commands. For this we will prepare an activity without
executing it and use the oet procedure commands to run the prepared
activity.

$ oet activity run allocate sbd-123 --script-args='{"init": {"kwargs": {"foo": "bar"}}}'

 ID Activity SB ID Creation Time Procedure ID State
---- ---------- ------- ------------------- -------------- ---------
 1 allocate sbd-123 2023-01-06 13:56:47 1 REQUESTED

Note the use of keyword arguments for the script arguments. These will be
passed as arguments when each function in the script is run. If the given
keyword argument is already defined in the Scheduling Block, the value
will be overwritten with the user provided one.

The activity has now been started and will complete without any further
interaction from the user.

For an example of more advanced use of the activity interface, run an activity
but set the prepare-only flag to True:

$ oet activity run observe sbd-123 --prepare-only=True

 ID Activity SB ID Creation Time Procedure ID State
---- ---------- ------- ------------------- -------------- ---------
 2 observe sbd-123 2023-01-06 13:56:56 2 REQUESTED

We can check the state of the activities currently present:

$ oet activity list

 ID Activity SB ID Creation Time Procedure ID State
---- ---------- ------- ------------------- -------------- ---------
 1 allocate sbd-123 2023-01-06 13:56:47 1 COMPLETE
 2 observe sbd-123 2023-01-06 13:56:56 2 PREPARED

Note that the first activity prepares and runs the script automatically but
the second one only prepares the script but does not run it. To run the script
of the second activity we need to note the Procedure ID for the activity
and use oet procedure commands to run the script:

$ oet procedure start --pid=2

 ID Script Creation time State
---- --------------- ------------------- -------
 2 file://observe.py 2023-01-06 13:57:25 RUNNING

An oet activity describe command will give further detail on an activity.

$ oet activity describe --aid=1

 ID Activity SB ID Procedure ID State
 ---- ---------- ------- -------------- ---------
 1 allocate sbd-123 1 COMPLETE

 URI Prepare Only
 --- --------------
 http://0.0.0.0:5000/api/v1.0/activities/1 False

 Time State
 -------------------------- ---------
 2023-01-06 13:56:47.655175 REQUESTED
 2023-01-06 13:56:47.934723 PREPARED
 2023-01-06 13:56:48.004753 RUNNING
 2023-01-06 13:56:50.382756 COMPLETE

 Script Arguments

 Method Arguments Keyword Arguments
 -------- ----------- -------------------
 init [1, 'foo'] {'foo': 'bar'}

You can also view the details of the script that was run by the activity:

$ oet procedure describe --pid=1

 ID Script URI
 ---- --------------- ---
 1 file://allocate.py http://0.0.0.0:5000/api/v1.0/procedures/1

 Time State
 -------------------------- -------
 2023-01-06 13:56:47.655175 CREATING
 2023-01-06 13:56:47.663742 IDLE
 2023-01-06 13:56:47.665741 LOADING
 2023-01-06 13:56:47.730696 IDLE
 2023-01-06 13:56:47.731965 RUNNING 1
 2023-01-06 13:56:47.934723 READY
 2023-01-06 13:56:48.004753 RUNNING 2
 2023-01-06 13:56:50.382756 READY

Index Method Arguments Keyword Arguments
-------- -------- ---------- -------------------
 1 init [1, 'foo'] {'foo': 'bar'}
 2 run [] {}

Footnotes

[1]
Specifically, the cli tool acts as a REST client that interfaces with
the OET REST API described in Module View: REST API.

[2]
For reference, the OET architecture refers to Python scripts as Procedures.

Environment Variables

Telescope

The SKA comprises two telescopes: SKA MID (Dishes) and SKA LOW (Antennas).
The behaviour of code in the ska_oso_scripting module differs depending on
whether it is running in an SKA MID environment (default) or an SKA LOW
environment. For example, when configured for SKA MID, the code will reject
CDM payloads intended for SKA LOW.

The ska-oso-scripting code is configured for MID or LOW by setting the
SKA_TELESCOPE environment variable to either ‘skamid’ or ‘skalow’.
If no environment variable is specified, the code assumes it is controlling
SKA MID.

The telescope setting is also exposed as a configurable value in the
ska-oso-scripting Helm charts, with a default value also set to SKA MID. The
ska-oso-scripting definitions in the skamid and skalow SKAMPI Helm charts set the
appropriate value for their respective deployments.

Tango Device FQDNs

The SKA, and so by extension the OET, makes use of Tango Controls to control
the telescope hardware. The Fully Qualified Domain Names (FQDNs) or prefixes
of the Tango devices used to control the central node (telescope) and
sub-arrays are set as environment variables CENTRALNODE_FQDN and
SUBARRAYNODE_FQDN_PREFIX respectively. These environment variables are set
to the those defined in values.yaml when ska-oso-scripting/SKAMPI is deployed.

C&C view: OET client and OET backend

This view is a component and connector (C&C) view of the OET that depicts the primary OET clients and their connection
to the OET backend, and how the components of the backend are connected.

Primary Presentation

[image: _images/backend_candc_primary.svg]

Elements and their properties

Components

Key OET clients and core components of the OET backend

	Component

	Description

	FlaskWorker

	FlaskWorker is a Flask application that presents a RESTful OET API, functioning as a REST adapter for the
ScriptExecutionService. Scripts can be created, controlled, and terminated via the REST API. The FlaskWorker
presents a REST resource for each script process created and managed by the ProcessManager.

FlaskWorker also presents a Server-Sent Event (SSE) data stream, republishing each event seen on the OET event
bus as an SSE event. This SSE stream gives remote clients visibility of actions taken by the OET backend and
events announced by scripting libraries and user scripts.

 Module view: Script Execution UI and Service API

Module view: Script Execution UI and Service API

Note

Diagrams are embedded as SVG images. If the text is too small, please use your web browser to zoom in to the images,
which should be magnified without losing detail. Alternatively open image in a new tab with right click + Open in
a new tab.

This view is a module view showing the key components responsible for the OET interface, how they relay requests from
remote OET clients to the internal OET components responsible for meeting that request, and how the response makes
its way back to the client.

Primary Presentation

[image: _images/backend_module_ui_primary_script_exec.svg]
Major classes involved in the user interface and remote control of the script execution API.

Element Catalogue

Elements and Their Properties

	Component

	Description

	app

(variable in startup)

 Module view: Activity UI and Service API

Module view: Activity UI and Service API

Note

Diagrams are embedded as SVG images. If the text is too small, please use your web browser to zoom in to the images,
which should be magnified without losing detail. Alternatively open image in a new tab with right click + Open in
a new tab.

This view is a module view depicting the key components involved in SB activity execution; that is, requesting
an activity described by a Scheduling Block to be run.

Primary Presentation

[image: _images/backend_module_ui_primary_activity.svg]
Major classes responsible for the execution and management of activities.

Element Catalogue

Elements and their properties

	Component

	Description

	ActivityState

	ActivityState is an enumeration defining the states that an Activity (a concept linking Scheduling Blocks
to Procedures) can be in. State machine for activities has not yet been completely defined and currently
Activity can only be in state REQUESTED.

	ActivityService

	ActivityService provides the high-level API for the activity domain, presenting methods that
‘run a script referenced by activity X of scheduling block Y’. The ActivityService completes user requests
by translating the activity requests into Procedure domain commands which then execute the scripts.

The steps taken by the ActivityService to construct a PrepareProcedureCommand are:

 Module view: Script Execution

Module view: Script Execution

Note

Diagrams are embedded as SVG images. If the text is too small, please use your web browser to zoom in to the images,
which should be magnified without losing detail. Alternatively open image in a new tab with right click + Open in
a new tab.

This view is a module view depicting the key components involved in script execution; that is, creating new
Python processes that load a user script and run functions in that user script when requested.

Primary Presentation

[image: _images/backend_module_script_execution_primary.svg]
Major classes responsible for the execution and management of user scripts.

Element Catalogue

Elements and their properties

	Component

	Description

	EmbeddedStringScript

	NOT IMPLEMENTED YET

EmbeddedStringScript holds a complete Python script as a string. This class has been identified as possibly being
useful as it allows a SchedulingBlock to directly specify and inject the code to be run, but has not been
implemented.

 Module View: REST API

Module View: REST API

1. Interface Identity

OET REST API presents REST resources that can be used to manage the lifecycle of Python scripts running on a remote
server and to inspect their status.

2. Resources

A ‘Procedure’ represents a Python script to run, or that is running, on the backend. The REST API operates on
Procedures.

The standard workflow is to use the API to:

	Instruct the backend to prepare a script for execution by using HTTP POST to upload a JSON Procedure to
/api/v1/procedures

	Start script execution by uploading an updated JSON Procedure with a ProcedureState of RUNNING.

	(optional) a running script can be terminated by using PUT to upload a JSON Procedure with a ProcedureState
of STOPPED.

The current status of a script execution can be inspected at any time by reading the JSON Procedure with HTTP GET.

This workflow has been mapped to the following REST resources:

Procedure REST resources

	HTTP Method

	Resource URL

	Description

	GET

	/api/v1/procedures

	List procedures

Return the collection of all prepared and running procedures.

 ska_oso_oet.tango

ska_oso_oet.tango

The ska_oso_oet.tango module contains code that could be called from observing scripts. Primarily, this will
involve interactions with ska_oso_oet.tango.TangoExecutor.

	
class ska_oso_oet.tango.TangoExecutor(proxy_factory=<ska_oso_oet.tango.TangoDeviceProxyFactory object>)

	TangoExecutor is the proxy between calling code and Tango devices. It
accepts encapsulated Tango interactions and performs them on behalf of the
calling code.

	
__init__(proxy_factory=<ska_oso_oet.tango.TangoDeviceProxyFactory object>)

	Create a new TangoExecutor.

	Parameters:

	proxy_factory – a function or object which, when called, returns
an object that conforms to the PyTango DeviceProxy interface.

	
execute(command: Command, **kwargs)

	Execute a Command on a Tango device.

Additional kwargs to the DeviceProxy can be specified if required.

	Parameters:

	command – the command to execute

	Returns:

	the response, if any, returned by the Tango device

	
read(attribute: Attribute)

	Read an attribute on a Tango device.

	Parameters:

	attribute – the attribute to read

	Returns:

	the attribute value

	
read_event(attr: Attribute) → tango.EventData

	Get an event for the specified attribute.

	
subscribe_event(attribute: Attribute)

	Subscribe event on a Tango device.

	Parameters:

	attribute – the attribute to subscribe to

	Returns:

	subscription ID

	
unsubscribe_event(attribute: Attribute, event_id: int [https://docs.python.org/3/library/functions.html#int])

	unsubscribe event on a Tango device.

	Parameters:

	
	attribute – the attribute to unsubscribe

	event_id – event subscribe id

	Returns:

	

	
class ska_oso_oet.tango.Attribute(device: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	An abstraction of a Tango attribute.

	
__init__(device: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Create an Attribute instance.

	Parameters:

	
	device – the FQDN of the target Tango device

	name – the name of the attribute to read

	
class ska_oso_oet.tango.Command(device: str [https://docs.python.org/3/library/stdtypes.html#str], command_name: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs)

	An abstraction of a Tango command.

	
__init__(device: str [https://docs.python.org/3/library/stdtypes.html#str], command_name: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs)

	Create a Tango command.
:param device: the FQDN of the target Tango device
:param command_name: the name of the command to execute
:param args: unnamed arguments to be passed to the command
:param kwargs: keyword arguments to be passed to the command

 ska_oso_oet.features

ska_oso_oet.features

The features module contains code handling the setting and reading of OET
feature flags. OET feature flags are configured once, at deployment time, and
are not reconfigured during execution.

Feature flag values are set from, in order:

	environment variables,

	an .ini file

	default values set in code

	
class ska_oso_oet.features.Features(config_parser: ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser])

	The Features class holds flags for OET features that can be toggled.

	
__init__(config_parser: ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser])

	

	
static create_from_config_files(*paths) → Features

	Create a new Features instance from a set of feature flag
configuration files.

	Parameters:

	paths – configuration files to parse

 ska_oso_oet

ska_oso_oet

Reading ska_oso_oet.ini file value and initializing constant of feature toggle
with enabling event based polling/pubsub

ska_oso_oet.main

ska_oso_oet.tango

	
class ska_oso_oet.tango.TangoDeviceProxyFactory

	A call to create Tango DeviceProxy clients.
This class exists to allow unit tests to override the factory with an
implementation that returns mock DeviceProxy instances.

	
class ska_oso_oet.tango.TangoExecutor(proxy_factory=<ska_oso_oet.tango.TangoDeviceProxyFactory object>)

	TangoExecutor is the proxy between calling code and Tango devices. It
accepts encapsulated Tango interactions and performs them on behalf of the
calling code.

	
class SingleQueueEventStrategy(mgr: SubscriptionManager)

	SingleQueueEventStrategy encapsulates the event handling behaviour of
the TangoExecutor from ~October 2021, when all events were added to a
single queue and subscriptions were created and released after each
attribute read operation.

We hope to replace this with a more advanced implementation that
allows subscriptions to multiple events.

	Parameters:

	mgr – SubscriptionManager instance used to observe events

	
__init__(mgr: SubscriptionManager)

	

	
notify(evt: tango.EventData)

	This implements the SubscriptionManager EventObserver interface. Tango
ChangeEvents republished by the SubscriptionManager are received via
this method.

Queue is thread-safe so we do not need to synchronise this method with
read_event.

	
read_event(attr: Attribute) → tango.EventData

	Read an event from the queue. This function blocks until an event
is received.

With a single subscription active at any one time, the attribute
is ignored by this implementation but is expected to be required
by strategy that support multiple attribute subscriptions.

	
subscribe_event(attr: Attribute) → int [https://docs.python.org/3/library/functions.html#int]

	Subscribe to change events published by a Tango attribute.

This strategy only supports one active subscription at any time.
An exception will be raised if a second subscription is attempted.

This method returns a subscription identifier which should be
supplied to a subsequent unsubscribe_event method.

	Parameters:

	attr – attribute to subscribe to

	Returns:

	subscription identifier

	
unsubscribe_event(attr: Attribute, subscription_id: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Unsubscribe to change events published by a Tango attribute.

This strategy only supports one active subscription at any time.
An exception will be raised if a second subscription is attempted.

	Parameters:

	
	attr – attribute to unsubscribe from

	subscription_id – subscription identifier

	
__init__(proxy_factory=<ska_oso_oet.tango.TangoDeviceProxyFactory object>)

	Create a new TangoExecutor.

	Parameters:

	proxy_factory – a function or object which, when called, returns
an object that conforms to the PyTango DeviceProxy interface.

	
execute(command: Command, **kwargs)

	Execute a Command on a Tango device.

Additional kwargs to the DeviceProxy can be specified if required.

	Parameters:

	command – the command to execute

	Returns:

	the response, if any, returned by the Tango device

	
read(attribute: Attribute)

	Read an attribute on a Tango device.

	Parameters:

	attribute – the attribute to read

	Returns:

	the attribute value

	
read_event(attr: Attribute) → tango.EventData

	Get an event for the specified attribute.

	
subscribe_event(attribute: Attribute)

	Subscribe event on a Tango device.

	Parameters:

	attribute – the attribute to subscribe to

	Returns:

	subscription ID

	
unsubscribe_event(attribute: Attribute, event_id: int [https://docs.python.org/3/library/functions.html#int])

	unsubscribe event on a Tango device.

	Parameters:

	
	attribute – the attribute to unsubscribe

	event_id – event subscribe id

	Returns:

	

	
class ska_oso_oet.tango.SubscriptionManager(proxy_factory=<ska_oso_oet.tango.TangoDeviceProxyFactory object>)

	SubscriptionManager is a proxy for Tango event subscriptions that prevents
duplicate subscriptions and minimises subscribe/unsubscribe calls.

Previously, each time a script listened to an event, it would subscribe to
an event, wait for reception of the appropriate event, then unsubscribe.
These multiple subscribe/unsubscribe calls were found to create problems.
SubscriptionManager was introduced to manage subscriptions, with the aim of
having fewer, longer-lived subscriptions. Clients subscribe to the
SubscriptionManager, and the SubscriptionManager handles any required
subscriptions to Tango devices.

The SubscriptionManager component is responsible for managing events and event subscriptions in the OET. The
SubscriptionManager sits as a proxy between client and Tango event subscriptions, moving the pub/sub layer accessed by
clients away from the Tango layer and into the OET layer. Clients register with the SubscriptionManager as observers of
an attribute. If required, one long-lived Tango subscription per attribute is created on demand by the
SubscriptionManager. The SubscriptionManager relays received Tango events to all attribute observers registered at the
time of event reception. Unregistering an observer from the SubscriptionManager prevents subsequent notifications but
does not affect the underlying Tango event subscription, which continues to operate until the Python interpreter exits.

Legacy calling code expects a maximum of one subscription to be active at any one time. Additionally, the caller always
sandwiched read_event calls between subscribe_attribute and unsubscribe_attribute calls. Together, this
meant subscriptions were short-lived, existing for the duration of a single attribute monitoring operation, and that one
Queue to hold events was sufficient as there would only ever be one Tango event subscription. To maintain this legacy
behaviour, subscribe_attribute and unsubscribe_attribute register and unregister the TangoExecutor as an
observer of events, with the TangoExecutor.notify method adding received events to the TangoExecutor queue read by
the legacy TangoExecutor.read_event method.

[image: ../_images/subscriptionmanager-class.svg]
Class diagram for components involved in OET event handling

[image: ../_images/subscriptionmanager-sequence.svg]
Sequence diagram from OET event handling

	Members:

	

	
__init__(proxy_factory=<ska_oso_oet.tango.TangoDeviceProxyFactory object>)

	

	
register_observer(attr: Attribute, observer)

	Register an EventObserver as an observer of a Tango attribute.

Once registered, the EventObserver will be notified of each Tango
event published by the attribute.

	Parameters:

	
	attr – Tango attribute to observe

	observer – the EventObserver to notify

	
unregister_observer(attr: Attribute, observer)

	Deregister an EventObserver as an observer of a Tango attribute.

	Parameters:

	
	attr – the observed Tango attribute

	observer – the EventObserver to unsubscribe

	
class ska_oso_oet.tango.LocalScanIdGenerator(start=1)

	LocalScanIdGenerator is an abstraction of a service that will generate scan
IDs as unique integers. Expect scan UID generation to be a database
operation or similar in the production implementation.

	
__init__(start=1)

	

	
next()

	Get the next scan ID.

	Returns:

	integer scan ID

	
property value

	Get the current scan ID.

	
class ska_oso_oet.tango.RemoteScanIdGenerator(hostname)

	RemoteScanIdGenerator connects to the skuid service to retrieve IDs

	
__init__(hostname)

	

	
next()

	Get the next scan ID.

	Returns:

	integer scan ID

	
property value

	Get the current scan ID.

	
class ska_oso_oet.tango.Callback

	Callback is an observable that distributes Tango events received by the
callback instance to all observers registered at the moment of event
reception.

	
__init__()

	

	
notify_observers(evt: tango.EventData)

	Distribute an event to all registered observers.

	Parameters:

	evt – event to distribute

	
register_observer(observer)

	Register an EventObserver.

Once registered, the observer will be notified of all Tango events
received by this instance.

	Parameters:

	observer – observer to register

	
unregister_observer(observer)

	Unregister an EventObserver.

Unsubscribed observers will not receive Tango events subsequently
received by this instance.

	Parameters:

	observer – observer to register

ska_oso_oet.ui

 ska_oso_oet.activity

ska_oso_oet.activity

ska_oso_oet.activity.application

The ska_oso_oet.activity.application module contains code related
to OET ‘activities’ that belong in the application layer. This application
layer holds the application interface, delegating to objects in the domain
layer for business rules and actions.

	
class ska_oso_oet.activity.application.ActivityService

	ActivityService provides the high-level interface and facade for
the activity domain.

The interface is used to run activities referenced by Scheduling Blocks.
Each activity will run a script (or procedure) but ActivityService
will create the necessary commands for Procedure domain to create
and execute the scripts.

	
__init__()

	

	
complete_run_activity(prepared_summary: ProcedureSummary, request_id: int [https://docs.python.org/3/library/functions.html#int]) → ActivitySummary | None [https://docs.python.org/3/library/constants.html#None]

	Complete the request to run the Activity, using the ProcedureSummary that is now available.
This includes updating the Activity with the procedure_id, sending the request to start the procedure if prepare_only is not set to True,
and returning the ActivitySummary.

	Parameters:

	
	prepared_summary – the ProcedureSummary for the Procedure related to the requested Activity

	request_id – The original request_id from the REST layer

	Returns:

	an ActivitySummary describing the state of the Activity that the Procedure is linked to,
or None if the Procedure was not created from an Activity

	
prepare_run_activity(cmd: ActivityCommand, request_id: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Prepare to run the activity of a Scheduling Block. This includes retrieving the script
from the scheduling block and sending the request messages to the
ScriptExecutionService to prepare the script.

The request_id is required to be propagated through the messages sent to the Procedure layer,
so the REST layer can wait for the correct response event.

	Parameters:

	
	cmd – dataclass argument capturing the activity name and SB ID

	request_id – The original request_id from the REST layer

	
summarise(activity_ids: List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][ActivitySummary]

	Return ActivitySummary objects for Activities with the requested IDs.

This method accepts an optional list of integers, representing the
Activity IDs to summarise. If the IDs are left undefined,
ActivitySummary objects for all current Activities will be returned.

	Parameters:

	activity_ids – optional list of Activity IDs to summarise.

	Returns:

	list of ActivitySummary objects

	
write_sbd_to_file(sbd) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Writes the SBD json to a temporary file location and returns the path.

	
class ska_oso_oet.activity.application.ActivitySummary(id: int [https://docs.python.org/3/library/functions.html#int], pid: int [https://docs.python.org/3/library/functions.html#int], sbd_id: str [https://docs.python.org/3/library/stdtypes.html#str], activity_name: str [https://docs.python.org/3/library/stdtypes.html#str], prepare_only: bool [https://docs.python.org/3/library/functions.html#bool], script_args: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], ska_oso_oet.procedure.domain.ProcedureInput], activity_states: List[Tuple[ska_oso_oet.activity.domain.ActivityState, float [https://docs.python.org/3/library/functions.html#float]]])

	
	
__init__(id: int [https://docs.python.org/3/library/functions.html#int], pid: int [https://docs.python.org/3/library/functions.html#int], sbd_id: str [https://docs.python.org/3/library/stdtypes.html#str], activity_name: str [https://docs.python.org/3/library/stdtypes.html#str], prepare_only: bool [https://docs.python.org/3/library/functions.html#bool], script_args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], ProcedureInput], activity_states: List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ActivityState, float [https://docs.python.org/3/library/functions.html#float]]]) → None [https://docs.python.org/3/library/constants.html#None]

	

ska_oso_oet.activity.domain

The ska_oso.activity.domain module contains code that belongs to the activity
domain layer. Classes and definitions contained in this domain layer define
the high-level concepts used to describe and launch scheduling block
activities.

	
class ska_oso_oet.activity.domain.Activity(activity_id: int [https://docs.python.org/3/library/functions.html#int], procedure_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None], sbd_id: str [https://docs.python.org/3/library/stdtypes.html#str], activity_name: str [https://docs.python.org/3/library/stdtypes.html#str], prepare_only: bool [https://docs.python.org/3/library/functions.html#bool])

	Activity represents an action taken on a scheduling block.

An activity maps to a script that accomplishes the activity’s goal. In a
telescope control context, activities and goals could be ‘allocate
resources for this SB’, ‘observe this SB’, etc. That is, users talk about
doing something with the SB; their focus is not on which script needs to
run and what script parameters are required to accomplish that task.

	
__init__(activity_id: int [https://docs.python.org/3/library/functions.html#int], procedure_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None], sbd_id: str [https://docs.python.org/3/library/stdtypes.html#str], activity_name: str [https://docs.python.org/3/library/stdtypes.html#str], prepare_only: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.activity.domain.ActivityState(value)

	ActivityState represent the state of an Activity.

ActivityState is currently a placeholder, to be elaborated with the full
activity lifecycle (CREATED, RUNNING, SUCCEEDED, FAILED, etc.) in a later
PI.

ska_oso_oet.activity.ui

The ska_oso_oet.activity.ui module contains code that belongs to the activity
UI/presentation layer. This layer is the means by which external users or
systems would interact with activities.

	
ska_oso_oet.activity.ui.make_public_activity_summary(activity: ActivitySummary)

	Convert an ActivitySummary into JSON ready for client consumption.

The main use of this function is to replace the internal Activity ID with
the resource URI, e.g., 1 -> http://localhost:5000/api/v1.0/procedures/1

	Parameters:

	activity – ActivitySummary to convert

	Returns:

	safe JSON representation

 ska_oso_oet.event.topics

ska_oso_oet.event.topics

	
class ska_oso_oet.event.topics.activity

	Root topic for events related to activities.

	
class lifecycle

	Topic for events related to activity lifecycle.

	
class running

	Emitted when an activity starts running.

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	result: ActivitySummary characterising the running activity

	
class pool

	Topic for events on characterisation of the activity pool.

	
class list

	Emitted when current activities and their status is enumerated.

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	
	result: list of ActivitySummary instances characterising
	activites and their states.

	
class ska_oso_oet.event.topics.procedure

	Root topic for events related to procedures.

	
class lifecycle

	Topic for events related to procedure lifecycle.

	
class complete

	Emitted when a Procedure has completed successfully and is no longer
available to be called.

	
msgDataSpec(request_id, result)

	
	msg_src: ID of Procedure that completed

	
class created

	Emitted when a procedure is created, i.e., a script is loaded and
Python interpreter initialised.

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	result: ProcedureSummary characterising the created procedure

	
class failed

	Emitted when a procedure fails.

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the event originated

	request_id: unique identifier for this event

	result: ProcedureSummary characterising the failed procedure

	
class stacktrace

	Announces cause of a Procedure failure.

	
msgDataSpec(stacktrace)

	
	msg_src: component from which the request originated

	stacktrace: stacktrace as a string

	
class started

	Emitted when any user function in a procedure is running, i.e., script init is called

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	result: ProcedureSummary characterising the created procedure

	
class statechange

	Emitted when a procedure status changes.

To be amalgamated and rationalised with other lifecycle events to
better handle rerunnable scripts.

	
msgDataSpec(new_state)

	
	msg_src: component from which the request originated

	new_state: new state

	
class stopped

	Emitted when a procedure stops, e.g., script completes or is aborted.

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	result: ProcedureSummary characterising the created procedure

	
class pool

	Topic for events on characterisation of the process pool.

	
class list

	Emitted when current procedures and their status is enumerated.

	
msgDataSpec(request_id, result)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	
	result: list of ProcedureSummary instances characterising
	procedures and their states.

	
class ska_oso_oet.event.topics.request

	Root topic for events emitted when a user or system component has made a
request.

	
class activity

	Topic for user requests related to activities.

	
class list

	Emitted when a request to enumerate all activities is received.

	
msgDataSpec(request_id, activity_ids=None)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	activity_ids: Activity IDs to list.

	
class run

	Emitted when a request to run an activity is received.

	
msgDataSpec(request_id, cmd)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	cmd: ActivityCommand containing request parameters

	
class procedure

	Topic for user requests related to procedures.

	
class create

	Emitted when a request to create a procedure is received.

	
msgDataSpec(request_id, cmd)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	cmd: PrepareProcessCommand containing request parameters

	
class list

	Emitted when a request to enumerate all procedures is received.

	
msgDataSpec(request_id, pids=None)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	pids: Procedure IDs to list

	
class start

	Emitted when a request to start procedure execution is received.

	
msgDataSpec(request_id, cmd)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	cmd: StartProcessCommand containing request parameters

	
class stop

	Emitted when a request to stop a procedure is received.

	
msgDataSpec(request_id, cmd)

	
	msg_src: component from which the request originated

	request_id: unique identifier for this request

	cmd: StartProcessCommand containing request parameters

	
class ska_oso_oet.event.topics.sb

	Root topic for events emitted relating to Scheduling Blocks

	
class lifecycle

	Topic for events related to Scheduling Block lifecycle

	
class allocated

	Emitted when resources have been allocated within SB execution

	
msgDataSpec(sb_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	
class observation

	Topic for events related to executing an observation within an SB

	
class finished

	Emitted when an observation is finished

	
class failed

	Emitted when an error was encountered during observation execution

	
msgDataSpec(sb_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	
class succeeded

	Emitted when an observation is finished successfully

	
msgDataSpec(sb_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	
class started

	Emitted when an observation is started

	
msgDataSpec(sb_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	
class ska_oso_oet.event.topics.scan

	Root topic for events emitted relating to Scans in the context of SB execution

	
class lifecycle

	Topic for events related to SB scan lifecycle

	
class configure

	Emitted when sub-array resources are configured for a scan

	
class complete

	Emitted as scan configuration completes successfully.

	
msgDataSpec(sb_id, scan_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	scan_id: Scan ID

	
class failed

	Emitted if scan configuration fails.

	
msgDataSpec(sb_id, scan_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	scan_id: Scan ID

	
class started

	Emitted as scan configuration begins.

	
msgDataSpec(sb_id, scan_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	scan_id: Scan ID

	
class end

	Emitted when a scan finishes

	
class failed

	Emitted when an error was encountered during a scan

	
msgDataSpec(sb_id, scan_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	
class succeeded

	Emitted when a scan completes successfully

	
msgDataSpec(sb_id, scan_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	scan_id: Scan ID

	
class start

	Emitted when resources have been allocated within SB execution

	
msgDataSpec(sb_id)

	
	msg_src: component from which the request originated

	sb_id: Scheduling Block ID

	scan_id: Scan ID

	
class ska_oso_oet.event.topics.subarray

	Root topic for events emitted relating to individual Subarray activites

	
class configured

	Emitted when subarray has been configured

	
msgDataSpec(subarray_id)

	
	msg_src: component from which the request originated

	sb_id: Subarray ID

	
class fault

	Topic for events emitted when subarray cannot be reached

	
msgDataSpec(subarray_id, error)

	
	msg_src: component from which the request originated

	sb_id: Subarray ID

	error: Error response received from Subarray

	
class resources

	Topic for events relating to Subarray resources

	
class allocated

	Emitted when resources have been allocated to a subarray

	
msgDataSpec(subarray_id)

	
	msg_src: component from which the request originated

	sb_id: Subarray ID

	
class deallocated

	Emitted when resources have been deallocated from a subarray

	
msgDataSpec(subarray_id)

	
	msg_src: component from which the request originated

	sb_id: Subarray ID

	
class scan

	Topic for events emitted when a scan is run on subarray

	
class finished

	Emitted when a scan is finished

	
msgDataSpec(subarray_id)

	
	msg_src: component from which the request originated

	sb_id: Subarray ID

	
class started

	Emitted when a scan is started

	
msgDataSpec(subarray_id)

	
	msg_src: component from which the request originated

	sb_id: Subarray ID

	
class ska_oso_oet.event.topics.user

	UNDOCUMENTED: created as parent without specification

	
class script

	UNDOCUMENTED: created as parent without specification

	
class announce

	UNDOCUMENTED: created without spec

	
msgDataSpec(msg)

	
	msg_src: component from which the request originated

	msg: user message

 ska_oso_oet.mptools

ska_oso_oet.mptools

Top-level package for Multiprocessing Tools.

This package is substantially based on Pamela D McA’Nulty’s mptools project,
which is hosted at

https://github.com/PamelaM/mptools

Pamela presents an excellent article given an overview of the MPTools package
at

https://www.cloudcity.io/blog/2019/02/27/things-i-wish-they-told-me-about-multiprocessing-in-python/

MPTools is subject to the MIT licence.

MIT License

Copyright (c) 2019, Pamela D McA’Nulty

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

	
class ska_oso_oet.mptools.EventMessage(msg_src: str [https://docs.python.org/3/library/stdtypes.html#str], msg_type: str [https://docs.python.org/3/library/stdtypes.html#str], msg: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	EventMessage holds the message and message metadata for events sent on the
event queue between MPTools ProcWorkers.

	
__init__(msg_src: str [https://docs.python.org/3/library/stdtypes.html#str], msg_type: str [https://docs.python.org/3/library/stdtypes.html#str], msg: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	

	
class ska_oso_oet.mptools.MPQueue(maxsize=0, *, ctx)

	MPQueue is a multiprocessing Queue extended with convenience methods that
return booleans to reflect success and failure rather than raising
exceptions.

	MPQueue adds methods to:
	
	get next item in an exception-free manner

	put an item in an exception-free manner

	drain queue to allow safe closure

	close queue in an exception-free manner

	
__init__(maxsize=0, *, ctx)

	

	
drain()

	Drain all items from this MPQueue, yielding each item until all items
have been removed.

	
safe_close() → int [https://docs.python.org/3/library/functions.html#int]

	Drain and close this MPQueue.

No more items can be added to this MPQueue one safe_close has been
called.

	
safe_get(timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = 0.02)

	Remove and return an item from this MPQueue.

If optional arg timeout is None, safe_get returns an item if one is
immediately available. If optional arg timeout is a positive number
(the default), safe_get blocks at most timeout seconds for an item to
become available. In either case, None is returned if no item is
available.

	Parameters:

	timeout – maximum timeout in seconds, or None for no waiting
period

	Returns:

	None if no item is available

	
safe_put(item, timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = 0.02) → bool [https://docs.python.org/3/library/functions.html#bool]

	Put an item on this MPQueue.

safe_put adds an item onto the queue if a free slot is available,
blocking at most timeout seconds for a free slot and returning False
if no free slot was available within that time.

	Parameters:

	
	item – item to add

	timeout – timeout in seconds

	Returns:

	True if the operation succeeded within the timeout

	
class ska_oso_oet.mptools.MainContext(mp_ctx: BaseContext | None [https://docs.python.org/3/library/constants.html#None] = None)

	MainContext is the parent context for a set of worker processes that
communicate via message queues.

	
MPQueue(*args, **kwargs) → MPQueue

	Create a new message queue managed by this context.

	Parameters:

	
	args – queue constructor args

	kwargs – queue constructor kwargs

	Returns:

	message queue instance

	
Proc(name: str [https://docs.python.org/3/library/stdtypes.html#str], worker_class: Type [https://docs.python.org/3/library/typing.html#typing.Type][ProcWorker], *args, **kwargs) → Proc

	Create a new process managed by this context.

	Parameters:

	
	name – name for worker process

	worker_class – worker process class

	args – any worker class constructor args

	kwargs – any worker class constructor kwargs

	Returns:

	worker instance

	
__init__(mp_ctx: BaseContext | None [https://docs.python.org/3/library/constants.html#None] = None)

	

	
stop_procs() → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Stop all ProcWorkers managed by this MPContext.

stop_procs requests cooperative shutdown of running ProcWorkers before
escalating to more forceful methods using POSIX signals.

This function returns with a 2-tuple, the first item indicating the
number of ProcWorkers that returned a non-zero exit status on
termination, the second item indicating the number of ProcWorkers that
required termination.

	Returns:

	tuple of process termination stats

	
stop_queues() → int [https://docs.python.org/3/library/functions.html#int]

	Drain all queues, blocking until they have stopped.

	Returns:

	number of items drained

	
class ska_oso_oet.mptools.Proc(mp: BaseContext, name: str [https://docs.python.org/3/library/stdtypes.html#str], worker_class: Type [https://docs.python.org/3/library/typing.html#typing.Type][ProcWorker], shutdown_event: Event, event_q: MPQueue, *args, logging_config: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	Proc represents a child process of a MainContext.

Proc instances exist in the scope of a MainContext instance and in the
same Python interpreter process as the MainContext. Procs are the
MainContext’s link to the ProcWorkers which run in separate Python
interpreters. Every ProcWorker running in a child process is associated
with one Proc.

Each Proc is responsible for bootstrapping its ProcWorker and managing its
lifecycle. Proc arranges for an instance of the ProcWorker class passed as
a constructor argument to be initialised and start running in a new child
Python interpreter. Proc checks that the ProcWorker has started
successfully by checking the status of a multiprocessing Event passed to
the ProcWorker as a constructor argument, which should be set by the
ProcWorker on successful startup. If ProcWorker startup does not complete
successfully and the event is left unset, Proc will forcibly terminate the
child process and report the error.

Proc is able to terminate its associated ProcWorker, first by giving the
ProcWorker chance to co-operatively exit by setting the shutdown event. If
the ProcWorker does not respond by exiting within the grace period set by
Proc.SHUTDOWN_WAIT_SECS, Proc will forcibly terminate the ProcWorker’s
process.

Proc ensures that the shutdown event and MPQueues it receives are passed
through to the ProcWorker. Note that by default only one shutdown event is
created by the MainContext, so setting the shutdown event triggers
shutdown in all ProcWorkers!

Proc does not contain any business logic or application-specific code,
which should be contained in the ProcWorker - or more likely, a class that
extends ProcWorker.

	
__init__(mp: BaseContext, name: str [https://docs.python.org/3/library/stdtypes.html#str], worker_class: Type [https://docs.python.org/3/library/typing.html#typing.Type][ProcWorker], shutdown_event: Event, event_q: MPQueue, *args, logging_config: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	

	
full_stop(wait_time=3.0) → None [https://docs.python.org/3/library/constants.html#None]

	Stop the ProcWorker child process.

The method will attempt to terminate ProcWorker execution, first by
setting the shutdown event and giving the ProcWorker opportunity to
cleanly exit. If the ProcWorker has not terminated after wait_time
seconds, SIGTERM signals are sent to the child process hosting the
ProcWorker.

	Parameters:

	wait_time – grace time before sending SIGTERM signals

	
terminate(max_retries=3, timeout=0.1) → bool [https://docs.python.org/3/library/functions.html#bool]

	Terminate the child process using POSIX signals.

This function sends SIGTERM to the child process, waiting timeout
seconds before checking process status and, if the process is still
alive, trying again.

	Parameters:

	
	max_retries – max retry attempts

	timeout – second to wait before retry

	Returns:

	True if process termination was successful

	
class ska_oso_oet.mptools.ProcWorker(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, *args, logging_config: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	ProcWorker is a template class for code that should execute in a child
Python interpreter process.

ProcWorker contains the standard boilerplate code required to set up a
well-behaved child process. It handles starting the process, connecting
signal handlers, signalling the parent that startup completed, etc.
ProcWorker does not contain any business logic, which should be defined
in a subclass of ProcWorker.

The core ProcWorker template method is main_loop, which is called once
startup is complete and main execution begins. In ProcWorker this method
is left blank and should be overridden by the class extending ProcWorker.
Once the main_loop method is complete, the ProcWorker is shut down.

MPTools provides some ProcWorker subclasses with main_loop implementations
that provide different kinds of behaviour. For instance,

	TimerProcWorker.main_loop has code calls a function on a fixed cadence;

	QueueProcWorker.main_loop has code that gets items from a queue, calling
a function with every item received.

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, *args, logging_config: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	Create a new ProcWorker.

	Parameters:

	
	name – name of this worker

	startup_event – event to set on startup completion

	shutdown_event – event to monitor for shutdown

	event_q – queue for messages to/from MainWorker

	args –

	
init_signals() → SignalObject

	Initialise signal handlers for this worker process.

Calling this method will install SIGTERM and SIGINT signal handlers
for the running process.

	
static int_handler(signal_object: SignalObject, exception_class, signal_num: int [https://docs.python.org/3/library/functions.html#int], current_stack_frame: frame | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Custom signal handling function that requests co-operative ProcWorker
shutdown by setting the shared Event, forcibly terminating the process by
raising an instance of the given exception class if call limit has been
exceeded.

	Parameters:

	
	signal_object – SignalObject to modify to reflect signal-handling
state

	exception_class – Exception type to raise when call limit is
exceeded

	signal_num – POSIX signal ID

	current_stack_frame – current stack frame

	
run() → int [https://docs.python.org/3/library/functions.html#int]

	Start ProcWorker execution.

This method performs the housekeeping required to set the worker
instance running and starts the main loop. An exit code of 0 is
returned if the main loop completes and exits cleanly.

	Returns:

	exit status code

	
static term_handler(signal_object: SignalObject, exception_class, signal_num: int [https://docs.python.org/3/library/functions.html#int], current_stack_frame: frame | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Custom signal handling function that requests co-operative ProcWorker
shutdown by setting the shared Event, forcibly terminating the process by
raising an instance of the given exception class if call limit has been
exceeded.

	Parameters:

	
	signal_object – SignalObject to modify to reflect signal-handling
state

	exception_class – Exception type to raise when call limit is
exceeded

	signal_num – POSIX signal ID

	current_stack_frame – current stack frame

	
class ska_oso_oet.mptools.QueueProcWorker(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, work_q: MPQueue, *args, **kwargs)

	QueueProcWorker is a ProcWorker that calls main_func with every item
received on its work queue.

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, work_q: MPQueue, *args, **kwargs)

	Create a new QueueProcWorker.

The events and MPQueues passed to this constructor should be created
and managed within the scope of a MainContext context manager and
shared with other ProcWorkers, so that the communication queues are
shared correctly between Python processes and there is a common event
that can be set to notify all processes when shutdown is required.

	Parameters:

	
	name – name of this worker

	startup_event – event to trigger when startup is complete

	shutdown_event – event to monitor for shutdown

	event_q – outbox for posting messages to main context

	work_q – inbox message queue for work messages

	args – captures other anonymous arguments

	kwargs – captures other keyword arguments

	
main_loop() → None [https://docs.python.org/3/library/constants.html#None]

	main_loop delivers each event received on the work queue to the
main_func template method, while checking for shutdown notifications.

Event delivery will cease when the shutdown event is set or a special
sentinel message is sent.

	
class ska_oso_oet.mptools.SignalObject(shutdown_event: Event)

	SignalObject is a struct holding properties and state referenced by
mptools signal handlers during their processing.

Setting the SignalObject.shutdown_event will request all MPTools processes
cooperatively shut down. SignalObject also records how many times a signal
has been received, allowing escalation for processes that do not
co-operate with shutdown_event requests.

	
__init__(shutdown_event: Event)

	Create a new SignalObject.

	Parameters:

	shutdown_event – shutdown Event shared between all MPTools
processes

	
exception ska_oso_oet.mptools.TerminateInterrupt

	

	
class ska_oso_oet.mptools.TimerProcWorker(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, *args, logging_config: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	TimerProcWorker is a ProcWorker that calls main_func on a fixed cadence.

	
ska_oso_oet.mptools.default_signal_handler(signal_object: SignalObject, exception_class, signal_num: int [https://docs.python.org/3/library/functions.html#int], current_stack_frame: frame | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Custom signal handling function that requests co-operative ProcWorker
shutdown by setting the shared Event, forcibly terminating the process by
raising an instance of the given exception class if call limit has been
exceeded.

	Parameters:

	
	signal_object – SignalObject to modify to reflect signal-handling
state

	exception_class – Exception type to raise when call limit is
exceeded

	signal_num – POSIX signal ID

	current_stack_frame – current stack frame

	
ska_oso_oet.mptools.init_signals(shutdown_event, int_handler, term_handler) → SignalObject

	Install SIGINT and SIGTERM signal handlers for the running Python process.

This function returns the SignalObject shared with signal handlers that
the handlers use to store signal handling state.

	Parameters:

	
	shutdown_event – Event to set when SIGINT or SIGTERM is received

	int_handler – SIGINT handler function to install

	term_handler – SIGTERM handler function to install

	Returns:

	SignalObject processed by signal handlers

	
ska_oso_oet.mptools.proc_worker_wrapper(proc_worker_class: Type [https://docs.python.org/3/library/typing.html#typing.Type][ProcWorker], name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_evt: Event, shutdown_evt: Event, event_q: MPQueue, *args, **kwargs)

	This function is called to launch the worker task from within the child
process.

	Parameters:

	
	proc_worker_class – worker class to instantiate

	name – name for this ProcWorker

	startup_evt – start-up event to share with worker

	shutdown_evt – shutdown event to share with worker

	event_q – event queue to share with worker

	args – any additional arguments to give to worker constructor

	Returns:

	

 ska_oso_oet.procedure

ska_oso_oet.procedure

ska_oso_oet.procedure.application

The ska_oso_oet.procedure.application module holds classes and functionality that
belong in the application layer of the OET. This layer holds the application
interface, delegating to objects in the domain layer for business rules and
actions.

	
class ska_oso_oet.procedure.application.ArgCapture(fn: str [https://docs.python.org/3/library/stdtypes.html#str], fn_args: ProcedureInput, time: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None)

	ArgCapture is a struct to record function call and time of invocation.

	
__init__(fn: str [https://docs.python.org/3/library/stdtypes.html#str], fn_args: ProcedureInput, time: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.application.PrepareProcessCommand(script: ExecutableScript, init_args: ProcedureInput)

	PrepareProcessCommand is input argument dataclass for the
ScriptExecutionService prepare command. It holds all the information
required to load and prepare a Python script ready for execution.

	
__init__(script: ExecutableScript, init_args: ProcedureInput) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.application.ProcedureHistory(process_states: List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ProcedureState, float [https://docs.python.org/3/library/functions.html#float]]] | None [https://docs.python.org/3/library/constants.html#None] = None, stacktrace=None)

	ProcedureHistory is a non-functional dataclass holding execution history of
a Procedure spanning all transactions.

	process_states: records time for each change of ProcedureState (list of
	tuples where tuple contains the ProcedureState and time when state was
changed to)

	stacktrace: None unless execution_error is True in which case stores
	stacktrace from process

	
__init__(process_states: List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ProcedureState, float [https://docs.python.org/3/library/functions.html#float]]] | None [https://docs.python.org/3/library/constants.html#None] = None, stacktrace=None)

	

	
class ska_oso_oet.procedure.application.ProcedureSummary(id: int [https://docs.python.org/3/library/functions.html#int], script: ExecutableScript, script_args: List [https://docs.python.org/3/library/typing.html#typing.List][ArgCapture], history: ProcedureHistory, state: ProcedureState)

	ProcedureSummary is a brief representation of a runtime Procedure. It
captures essential information required to describe a Procedure and to
distinguish it from other Procedures.

	
__init__(id: int [https://docs.python.org/3/library/functions.html#int], script: ExecutableScript, script_args: List [https://docs.python.org/3/library/typing.html#typing.List][ArgCapture], history: ProcedureHistory, state: ProcedureState) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.application.ScriptExecutionService(mp_context: BaseContext | None [https://docs.python.org/3/library/constants.html#None] = None, abort_script: ExecutableScript = FileSystemScript(script_uri='file:///home/docs/checkouts/readthedocs.org/user_builds/ska-telescope-ska-oso-oet/checkouts/5.2.0/src/ska_oso_oet/procedure/abort.py'), on_pubsub: List [https://docs.python.org/3/library/typing.html#typing.List][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[EventMessage], None [https://docs.python.org/3/library/constants.html#None]]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	ScriptExecutionService provides the high-level interface and facade for
the script execution domain (i.e., the ‘procedure’ domain).

The interface is used to load and run Python scripts in their own
independent Python child process.

The shutdown method should be called to ensure cleanup of any
multiprocessing artefacts owned by this service.

	
__init__(mp_context: BaseContext | None [https://docs.python.org/3/library/constants.html#None] = None, abort_script: ExecutableScript = FileSystemScript(script_uri='file:///home/docs/checkouts/readthedocs.org/user_builds/ska-telescope-ska-oso-oet/checkouts/5.2.0/src/ska_oso_oet/procedure/abort.py'), on_pubsub: List [https://docs.python.org/3/library/typing.html#typing.List][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[EventMessage], None [https://docs.python.org/3/library/constants.html#None]]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Create a new ScriptExecutionService.

The .stop() method of this ScriptExecutionService can run a second
script once the current process has been terminated. By default, this
second script calls SubArrayNode.abort() to halt further activities
on the sub-array controlled by the terminated script. To run a
different script, define the script URI in the abort_script_uri
argument to this constructor.

	Parameters:

	
	mp_context – multiprocessing context to use or None for default

	abort_script – post-termination script for two-phase abort

	on_pubsub – callbacks to call when PUBSUB message is received

	
prepare(cmd: PrepareProcessCommand) → ProcedureSummary

	Load and prepare a Python script for execution, but do not commence
execution.

	Parameters:

	cmd – dataclass argument capturing the script identity and load
arguments

	Returns:

	

	
start(cmd: StartProcessCommand) → ProcedureSummary

	Start execution of a prepared procedure.

	Parameters:

	cmd – dataclass argument capturing the execution arguments

	Returns:

	

	
stop(cmd: StopProcessCommand) → List [https://docs.python.org/3/library/typing.html#typing.List][ProcedureSummary]

	Stop execution of a running procedure, optionally running a
second script once the first process has terminated.

	Parameters:

	cmd – dataclass argument capturing the execution arguments

	Returns:

	

	
summarise(pids: List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][ProcedureSummary]

	Return ProcedureSummary objects for Procedures with the requested IDs.

This method accepts an optional list of integers, representing the
Procedure IDs to summarise. If the pids is left undefined,
ProcedureSummary objects for all current Procedures will be returned.

	Parameters:

	pids – optional list of Procedure IDs to summarise.

	Returns:

	list of ProcedureSummary objects

	
class ska_oso_oet.procedure.application.StartProcessCommand(process_uid: int [https://docs.python.org/3/library/functions.html#int], fn_name: str [https://docs.python.org/3/library/stdtypes.html#str], run_args: ProcedureInput, force_start: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	StartProcessCommand is the input argument dataclass for the
ScriptExecutionService start command. It holds the references required to
start a prepared script process along with any late-binding runtime
arguments the script may require.

	
__init__(process_uid: int [https://docs.python.org/3/library/functions.html#int], fn_name: str [https://docs.python.org/3/library/stdtypes.html#str], run_args: ProcedureInput, force_start: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.application.StopProcessCommand(process_uid: int [https://docs.python.org/3/library/functions.html#int], run_abort: bool [https://docs.python.org/3/library/functions.html#bool])

	StopProcessCommand is the input argument dataclass for the
ScriptExecutionService Stop command. It holds the references required to
Stop a script process along with any late-binding runtime
arguments the script may require.

	
__init__(process_uid: int [https://docs.python.org/3/library/functions.html#int], run_abort: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

ska_oso_oet.procedure.domain

The ska_oso_oet.procedure.domain module holds domain entities from the script
execution domain. Entities in this domain are things like scripts,
OS processes, process supervisors, signal handlers, etc.

	
class ska_oso_oet.procedure.domain.ExecutableScript

	Base class for all executable scripts.

Expected specialisations:

	scripts on filesystem

	scripts in git repository

	scripts given as a string

	scripts stored in the ODA

	etc.

	
__init__() → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.domain.FileSystemScript(script_uri: str [https://docs.python.org/3/library/stdtypes.html#str])

	Represents a script stored on the file system.

	
__init__(script_uri: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.domain.GitScript(script_uri: str [https://docs.python.org/3/library/stdtypes.html#str], git_args: GitArgs, create_env: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = False)

	Represents a script in a git repository.

	
__init__(script_uri: str [https://docs.python.org/3/library/stdtypes.html#str], git_args: GitArgs, create_env: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class ska_oso_oet.procedure.domain.LifecycleMessage(msg_src: str [https://docs.python.org/3/library/stdtypes.html#str], new_state: ProcedureState)

	LifecycleMessage is a message type for script lifecycle events.

	
__init__(msg_src: str [https://docs.python.org/3/library/stdtypes.html#str], new_state: ProcedureState)

	

	
class ska_oso_oet.procedure.domain.ModuleFactory

	Factory class used to return Python Module instances from a variety of
storage back-ends.

	
static get_module(script: ExecutableScript)

	Load Python code from storage, returning an executable Python module.

	Parameters:

	script – Script object describing the script to load

	Returns:

	Python module

	
class ska_oso_oet.procedure.domain.ProcedureInput(*args, **kwargs)

	ProcedureInput is a non-functional dataclass holding the arguments passed
to a script method.

	
__init__(*args, **kwargs)

	

	
class ska_oso_oet.procedure.domain.ProcedureState(value)

	Represents the script execution state.

	
class ska_oso_oet.procedure.domain.ProcessManager(mp_context: BaseContext | None [https://docs.python.org/3/library/constants.html#None] = None, on_pubsub: List [https://docs.python.org/3/library/typing.html#typing.List][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[EventMessage], None [https://docs.python.org/3/library/constants.html#None]]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	ProcessManager is the parent for all ScriptWorker processes.

ProcessManager is responsible for launching ScriptWorker processes and
communicating API requests such as ‘run main() function’ or ‘stop
execution’ to the running scripts. If a script execution process does
not respond to the request, the process will be forcibly terminated.
ProcessManager delegates to the mptools framework for process
management functionality. Familiarity with mptools is useful in
understanding ProcessManager functionality.

ProcessManager is also responsible for communicating script events to
the rest of the system, such as events issued by the script or related
to the script execution lifecycle.

It is recommended that ProcessManager.shutdown() be called before the
ProcessManager is garbage collected. Failure to call shutdown could break
the any multiprocessing state held in the scope of the manager or its
child processes. This may or may not be a problem, depending on what is
held and whether that state is used elsewhere. In short, be safe and call
shutdown().

Note: ProcessManager does not maintain a history of script execution.
History is recorded and managed by the ScriptExecutionService.

	
__init__(mp_context: BaseContext | None [https://docs.python.org/3/library/constants.html#None] = None, on_pubsub: List [https://docs.python.org/3/library/typing.html#typing.List][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[EventMessage], None [https://docs.python.org/3/library/constants.html#None]]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Create a new ProcessManager.

Functions passed in the on_pubsub argument will be called by the
ProcessManager every time the ProcessManager’s message loop receives
a PUBSUB EventMessage. Callbacks should not perform significant
processing on the same thread, as this would block the ProcessManager
event loop.

	Parameters:

	
	mp_context – multiprocessing context use to create
multiprocessing primitives

	on_pubsub – functions to call when a PUBSUB message is received

	
create(script: ExecutableScript, *, init_args: ProcedureInput) → int [https://docs.python.org/3/library/functions.html#int]

	Create a new Procedure that will, when executed, run the target Python
script.

Objects that can only be shared through inheritance, such as multiprocessing
object, can be shared by providing them as init_args here. These arguments will
be provided to the init function in the user script, where present.

	Parameters:

	
	script – script URI, e.g. ‘file://myscript.py’

	init_args – script initialisation arguments

	Returns:

	

	
run(process_id: int [https://docs.python.org/3/library/functions.html#int], *, call: str [https://docs.python.org/3/library/stdtypes.html#str], run_args: ProcedureInput, force_start: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Run a prepared Procedure.

This starts execution of the script prepared by a previous create()
call.

	Parameters:

	
	process_id – ID of Procedure to execute

	call – name of function to call

	run_args – late-binding arguments to provide to the script

	force_start – Add run command to queue even if the script is not yet ready to run.
Does not add command to queue if ProcedureState is FAILED, STOPPED, COMPLETE or UNKNOWN

	Returns:

	

	
stop(process_id: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Stop a running Procedure.

This stops execution of a currently running script.

	Parameters:

	process_id – ID of Procedure to stop

	Returns:

	

	
class ska_oso_oet.procedure.domain.ScriptWorker(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, work_q: MPQueue, *args, scan_counter: Value | None [https://docs.python.org/3/library/constants.html#None] = None, environment: Environment | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	ScriptWorker loads user code in a child process, running functions of that
user code on request.

ScriptWorker acts when a message is received on its work queue. It responds to four
types of messages:

	LOAD - to load the specified code in this process

	ENV - to install the dependencies for the specified script in this process

	RUN - to run the named function in this process

	PUBSUB - external pubsub messages that should be published locally

ScriptWorker converts external inter-process mptool pub/sub messages to
intra-process pypubsub pub/sub messages. That is, EventMessages received on the
local work queue are rebroadcast locally as pypubsub messages. Likewise, the
ScriptWorker listens to all pypubsub messages broadcast locally,
converts them to pub/sub EventQueue messages, and puts them on the ‘main’
queue for transmission to other interested ScriptWorkers.

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], startup_event: Event, shutdown_event: Event, event_q: MPQueue, work_q: MPQueue, *args, scan_counter: Value | None [https://docs.python.org/3/library/constants.html#None] = None, environment: Environment | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	Create a new ProcWorker.

	Parameters:

	
	name – name of this worker

	startup_event – event to set on startup completion

	shutdown_event – event to monitor for shutdown

	event_q – queue for messages to/from MainWorker

	args –

	
main_loop() → None [https://docs.python.org/3/library/constants.html#None]

	main_loop delivers each event received on the work queue to the
main_func template method, while checking for shutdown notifications.

Event delivery will cease when the shutdown event is set or a special
sentinel message is sent.

	
publish_lifecycle(new_state: ProcedureState)

	Broadcast a lifecycle status change event.

	Parameters:

	new_state – new lifecycle state

	
republish(topic: pubsub.pub.Topic = pubsub.pub.AUTO_TOPIC, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Republish a local pypubsub event over the inter-process mptools event
bus.

	Parameters:

	
	topic – message topic, set automatically by pypubsub

	kwargs – any metadata associated with pypubsub message

	Returns:

	

	
static term_handler(signal_object, exception_class, signal_num: int [https://docs.python.org/3/library/functions.html#int], current_stack_frame) → None [https://docs.python.org/3/library/constants.html#None]

	Custom signal handling function that simply raises an exception.
Assuming the running Python script does not catch this exception, it
will interrupt script execution and result in termination of that script.

We don’t want all sibling script processes to terminate, hence no setting
of shutdown_event is done in this handler.

	Parameters:

	
	signal_object – SignalObject to modify to reflect signal-handling
state

	exception_class – Exception type to raise when call limit is
exceeded

	signal_num – POSIX signal ID

	current_stack_frame – current stack frame

	
ska_oso_oet.procedure.domain.script_signal_handler(signal_object, exception_class, signal_num: int [https://docs.python.org/3/library/functions.html#int], current_stack_frame) → None [https://docs.python.org/3/library/constants.html#None]

	Custom signal handling function that simply raises an exception.
Assuming the running Python script does not catch this exception, it
will interrupt script execution and result in termination of that script.

We don’t want all sibling script processes to terminate, hence no setting
of shutdown_event is done in this handler.

	Parameters:

	
	signal_object – SignalObject to modify to reflect signal-handling
state

	exception_class – Exception type to raise when call limit is
exceeded

	signal_num – POSIX signal ID

	current_stack_frame – current stack frame

ska_oso_oet.procedure.environment

	
class ska_oso_oet.procedure.environment.Environment(env_id: str, creating: <bound method BaseContext.Event of <multiprocessing.context.DefaultContext object at 0x7f15fde8f520>>, created: <bound method BaseContext.Event of <multiprocessing.context.DefaultContext object at 0x7f15fde8f520>>, location: str, site_packages: str)

	
	
__init__(env_id: str [https://docs.python.org/3/library/stdtypes.html#str], creating: Event, created: Event, location: str [https://docs.python.org/3/library/stdtypes.html#str], site_packages: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

ska_oso_oet.procedure.gitmanager

Static helper functions for cloning and working with a Git repository

	
class ska_oso_oet.procedure.gitmanager.GitArgs(git_repo: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = 'https://gitlab.com/ska-telescope/oso/ska-oso-scripting.git', git_branch: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = 'master', git_commit: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	GitArgs captures information required to identify scripts
located in git repositories.

	
__init__(git_repo: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = 'https://gitlab.com/ska-telescope/oso/ska-oso-scripting.git', git_branch: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = 'master', git_commit: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	

ska_oso_oet.procedure.ui

The ska_oso_oet.procedure.ui package contains code that belong to the OET
procedure UI layer. This consists of the Procedure REST resources.

	
ska_oso_oet.procedure.ui.create_procedure()

	Create a new Procedure.

This method requests creation of a new Procedure as specified in the JSON
payload POSTed to this function.

	Returns:

	JSON summary of created Procedure

	
ska_oso_oet.procedure.ui.get_procedure(procedure_id: int [https://docs.python.org/3/library/functions.html#int])

	Get a Procedure.

This returns the Procedure JSON representation of the requested
Procedure.

	Parameters:

	procedure_id – ID of the Procedure to return

	Returns:

	Procedure JSON

	
ska_oso_oet.procedure.ui.get_procedures()

	List all Procedures.

This returns a list of Procedure JSON representations for all
Procedures held by the service.

	Returns:

	list of Procedure JSON representations

	
ska_oso_oet.procedure.ui.make_public_procedure_summary(procedure: ProcedureSummary)

	Convert a ProcedureSummary into JSON ready for client consumption.

The main use of this function is to replace the internal Procedure ID with
the resource URI, e.g., 1 -> http://localhost:5000/api/v1.0/procedures/1

	Parameters:

	procedure – Procedure to convert

	Returns:

	safe JSON representation

	
ska_oso_oet.procedure.ui.update_procedure(procedure_id: int [https://docs.python.org/3/library/functions.html#int])

	Update a Procedure resource using the desired Procedure state described in
the PUT JSON payload.

	Parameters:

	procedure_id – ID of Procedure to modify

	Returns:

	ProcedureSummary reflecting the final state of the Procedure

 ska_oso_oet.utils

ska_oso_oet.utils

The ska_oso_oet.utils.ui module contains common helper code for the UI layers.

	
ska_oso_oet.utils.ui.convert_request_dict_to_procedure_input(fn_dict: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → ProcedureInput

	Convert the dict of arguments for a single function into the domain.ProcedureInput

	Parameters:

	fn_dict – Dict of the args and kwargs, eg {‘args’: [1, 2], ‘kwargs’: {‘subarray_id’: 42}}

	Returns:

	The ProcedureInput, eg <ProcedureInput(1, 2, subarray_id=42)>

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 ska_oso_oet	

 	
 	
 ska_oso_oet.activity	

 	
 	
 ska_oso_oet.activity.application	

 	
 	
 ska_oso_oet.activity.domain	

 	
 	
 ska_oso_oet.activity.ui	

 	
 	
 ska_oso_oet.event.topics	

 	
 	
 ska_oso_oet.features	

 	
 	
 ska_oso_oet.mptools	

 	
 	
 ska_oso_oet.procedure	

 	
 	
 ska_oso_oet.procedure.application	

 	
 	
 ska_oso_oet.procedure.domain	

 	
 	
 ska_oso_oet.procedure.environment	

 	
 	
 ska_oso_oet.procedure.gitmanager	

 	
 	
 ska_oso_oet.procedure.ui	

 	
 	
 ska_oso_oet.utils.ui	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (ska_oso_oet.activity.application.ActivityService method)

 	(ska_oso_oet.activity.application.ActivitySummary method)

 	(ska_oso_oet.activity.domain.Activity method)

 	(ska_oso_oet.features.Features method)

 	(ska_oso_oet.mptools.EventMessage method)

 	(ska_oso_oet.mptools.MainContext method)

 	(ska_oso_oet.mptools.MPQueue method)

 	(ska_oso_oet.mptools.Proc method)

 	(ska_oso_oet.mptools.ProcWorker method)

 	(ska_oso_oet.mptools.QueueProcWorker method)

 	(ska_oso_oet.mptools.SignalObject method)

 	(ska_oso_oet.procedure.application.ArgCapture method)

 	(ska_oso_oet.procedure.application.PrepareProcessCommand method)

 	(ska_oso_oet.procedure.application.ProcedureHistory method)

 	(ska_oso_oet.procedure.application.ProcedureSummary method)

 	(ska_oso_oet.procedure.application.ScriptExecutionService method)

 	(ska_oso_oet.procedure.application.StartProcessCommand method)

 	(ska_oso_oet.procedure.application.StopProcessCommand method)

 	(ska_oso_oet.procedure.domain.ExecutableScript method)

 	(ska_oso_oet.procedure.domain.FileSystemScript method)

 	(ska_oso_oet.procedure.domain.GitScript method)

 	(ska_oso_oet.procedure.domain.LifecycleMessage method)

 	(ska_oso_oet.procedure.domain.ProcedureInput method)

 	(ska_oso_oet.procedure.domain.ProcessManager method)

 	(ska_oso_oet.procedure.domain.ScriptWorker method)

 	(ska_oso_oet.procedure.environment.Environment method)

 	(ska_oso_oet.procedure.gitmanager.GitArgs method)

 	(ska_oso_oet.tango.Attribute method)

 	(ska_oso_oet.tango.Callback method)

 	(ska_oso_oet.tango.Command method)

 	(ska_oso_oet.tango.LocalScanIdGenerator method)

 	(ska_oso_oet.tango.RemoteScanIdGenerator method)

 	(ska_oso_oet.tango.SubscriptionManager method)

 	(ska_oso_oet.tango.TangoExecutor method)

 	(ska_oso_oet.tango.TangoExecutor.SingleQueueEventStrategy method)

A

 	
 	Activity (class in ska_oso_oet.activity.domain)

 	activity (class in ska_oso_oet.event.topics)

 	activity.lifecycle (class in ska_oso_oet.event.topics)

 	activity.lifecycle.running (class in ska_oso_oet.event.topics)

 	activity.pool (class in ska_oso_oet.event.topics)

 	
 	activity.pool.list (class in ska_oso_oet.event.topics)

 	ActivityService (class in ska_oso_oet.activity.application)

 	ActivityState (class in ska_oso_oet.activity.domain)

 	ActivitySummary (class in ska_oso_oet.activity.application)

 	ArgCapture (class in ska_oso_oet.procedure.application)

 	Attribute (class in ska_oso_oet.tango)

C

 	
 	Callback (class in ska_oso_oet.tango)

 	Command (class in ska_oso_oet.tango)

 	complete_run_activity() (ska_oso_oet.activity.application.ActivityService method)

 	
 	convert_request_dict_to_procedure_input() (in module ska_oso_oet.utils.ui)

 	create() (ska_oso_oet.procedure.domain.ProcessManager method)

 	create_from_config_files() (ska_oso_oet.features.Features static method)

 	create_procedure() (in module ska_oso_oet.procedure.ui)

D

 	
 	default_signal_handler() (in module ska_oso_oet.mptools)

 	
 	drain() (ska_oso_oet.mptools.MPQueue method)

E

 	
 	Environment (class in ska_oso_oet.procedure.environment)

 	EventMessage (class in ska_oso_oet.mptools)

 	
 	ExecutableScript (class in ska_oso_oet.procedure.domain)

 	execute() (ska_oso_oet.tango.TangoExecutor method)

F

 	
 	Features (class in ska_oso_oet.features)

 	
 	FileSystemScript (class in ska_oso_oet.procedure.domain)

 	full_stop() (ska_oso_oet.mptools.Proc method)

G

 	
 	get_module() (ska_oso_oet.procedure.domain.ModuleFactory static method)

 	get_procedure() (in module ska_oso_oet.procedure.ui)

 	
 	get_procedures() (in module ska_oso_oet.procedure.ui)

 	GitArgs (class in ska_oso_oet.procedure.gitmanager)

 	GitScript (class in ska_oso_oet.procedure.domain)

I

 	
 	init_signals() (in module ska_oso_oet.mptools)

 	(ska_oso_oet.mptools.ProcWorker method)

 	
 	int_handler() (ska_oso_oet.mptools.ProcWorker static method)

L

 	
 	LifecycleMessage (class in ska_oso_oet.procedure.domain)

 	
 	LocalScanIdGenerator (class in ska_oso_oet.tango)

M

 	
 	main_loop() (ska_oso_oet.mptools.QueueProcWorker method)

 	(ska_oso_oet.procedure.domain.ScriptWorker method)

 	MainContext (class in ska_oso_oet.mptools)

 	make_public_activity_summary() (in module ska_oso_oet.activity.ui)

 	make_public_procedure_summary() (in module ska_oso_oet.procedure.ui)

 	
 module

 	ska_oso_oet

 	ska_oso_oet.activity

 	ska_oso_oet.activity.application

 	ska_oso_oet.activity.domain

 	ska_oso_oet.activity.ui

 	ska_oso_oet.event.topics

 	ska_oso_oet.features

 	ska_oso_oet.mptools

 	ska_oso_oet.procedure

 	ska_oso_oet.procedure.application

 	ska_oso_oet.procedure.domain

 	ska_oso_oet.procedure.environment

 	ska_oso_oet.procedure.gitmanager

 	ska_oso_oet.procedure.ui

 	ska_oso_oet.utils.ui

 	ModuleFactory (class in ska_oso_oet.procedure.domain)

 	MPQueue (class in ska_oso_oet.mptools)

 	MPQueue() (ska_oso_oet.mptools.MainContext method)

 	msgDataSpec() (ska_oso_oet.event.topics.activity.lifecycle.running method)

 	(ska_oso_oet.event.topics.activity.pool.list method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.complete method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.created method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.failed method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.stacktrace method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.started method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.statechange method)

 	(ska_oso_oet.event.topics.procedure.lifecycle.stopped method)

 	(ska_oso_oet.event.topics.procedure.pool.list method)

 	(ska_oso_oet.event.topics.request.activity.list method)

 	(ska_oso_oet.event.topics.request.activity.run method)

 	(ska_oso_oet.event.topics.request.procedure.create method)

 	(ska_oso_oet.event.topics.request.procedure.list method)

 	(ska_oso_oet.event.topics.request.procedure.start method)

 	(ska_oso_oet.event.topics.request.procedure.stop method)

 	(ska_oso_oet.event.topics.sb.lifecycle.allocated method)

 	(ska_oso_oet.event.topics.sb.lifecycle.observation.finished.failed method)

 	(ska_oso_oet.event.topics.sb.lifecycle.observation.finished.succeeded method)

 	(ska_oso_oet.event.topics.sb.lifecycle.observation.started method)

 	(ska_oso_oet.event.topics.scan.lifecycle.configure.complete method)

 	(ska_oso_oet.event.topics.scan.lifecycle.configure.failed method)

 	(ska_oso_oet.event.topics.scan.lifecycle.configure.started method)

 	(ska_oso_oet.event.topics.scan.lifecycle.end.failed method)

 	(ska_oso_oet.event.topics.scan.lifecycle.end.succeeded method)

 	(ska_oso_oet.event.topics.scan.lifecycle.start method)

 	(ska_oso_oet.event.topics.subarray.configured method)

 	(ska_oso_oet.event.topics.subarray.fault method)

 	(ska_oso_oet.event.topics.subarray.resources.allocated method)

 	(ska_oso_oet.event.topics.subarray.resources.deallocated method)

 	(ska_oso_oet.event.topics.subarray.scan.finished method)

 	(ska_oso_oet.event.topics.subarray.scan.started method)

 	(ska_oso_oet.event.topics.user.script.announce method)

N

 	
 	next() (ska_oso_oet.tango.LocalScanIdGenerator method)

 	(ska_oso_oet.tango.RemoteScanIdGenerator method)

 	
 	notify() (ska_oso_oet.tango.TangoExecutor.SingleQueueEventStrategy method)

 	notify_observers() (ska_oso_oet.tango.Callback method)

P

 	
 	prepare() (ska_oso_oet.procedure.application.ScriptExecutionService method)

 	prepare_run_activity() (ska_oso_oet.activity.application.ActivityService method)

 	PrepareProcessCommand (class in ska_oso_oet.procedure.application)

 	Proc (class in ska_oso_oet.mptools)

 	Proc() (ska_oso_oet.mptools.MainContext method)

 	proc_worker_wrapper() (in module ska_oso_oet.mptools)

 	procedure (class in ska_oso_oet.event.topics)

 	procedure.lifecycle (class in ska_oso_oet.event.topics)

 	procedure.lifecycle.complete (class in ska_oso_oet.event.topics)

 	procedure.lifecycle.created (class in ska_oso_oet.event.topics)

 	procedure.lifecycle.failed (class in ska_oso_oet.event.topics)

 	procedure.lifecycle.stacktrace (class in ska_oso_oet.event.topics)

 	
 	procedure.lifecycle.started (class in ska_oso_oet.event.topics)

 	procedure.lifecycle.statechange (class in ska_oso_oet.event.topics)

 	procedure.lifecycle.stopped (class in ska_oso_oet.event.topics)

 	procedure.pool (class in ska_oso_oet.event.topics)

 	procedure.pool.list (class in ska_oso_oet.event.topics)

 	ProcedureHistory (class in ska_oso_oet.procedure.application)

 	ProcedureInput (class in ska_oso_oet.procedure.domain)

 	ProcedureState (class in ska_oso_oet.procedure.domain)

 	ProcedureSummary (class in ska_oso_oet.procedure.application)

 	ProcessManager (class in ska_oso_oet.procedure.domain)

 	ProcWorker (class in ska_oso_oet.mptools)

 	publish_lifecycle() (ska_oso_oet.procedure.domain.ScriptWorker method)

Q

 	
 	QueueProcWorker (class in ska_oso_oet.mptools)

R

 	
 	read() (ska_oso_oet.tango.TangoExecutor method)

 	read_event() (ska_oso_oet.tango.TangoExecutor method)

 	(ska_oso_oet.tango.TangoExecutor.SingleQueueEventStrategy method)

 	register_observer() (ska_oso_oet.tango.Callback method)

 	(ska_oso_oet.tango.SubscriptionManager method)

 	RemoteScanIdGenerator (class in ska_oso_oet.tango)

 	republish() (ska_oso_oet.procedure.domain.ScriptWorker method)

 	request (class in ska_oso_oet.event.topics)

 	request.activity (class in ska_oso_oet.event.topics)

 	
 	request.activity.list (class in ska_oso_oet.event.topics)

 	request.activity.run (class in ska_oso_oet.event.topics)

 	request.procedure (class in ska_oso_oet.event.topics)

 	request.procedure.create (class in ska_oso_oet.event.topics)

 	request.procedure.list (class in ska_oso_oet.event.topics)

 	request.procedure.start (class in ska_oso_oet.event.topics)

 	request.procedure.stop (class in ska_oso_oet.event.topics)

 	run() (ska_oso_oet.mptools.ProcWorker method)

 	(ska_oso_oet.procedure.domain.ProcessManager method)

S

 	
 	safe_close() (ska_oso_oet.mptools.MPQueue method)

 	safe_get() (ska_oso_oet.mptools.MPQueue method)

 	safe_put() (ska_oso_oet.mptools.MPQueue method)

 	sb (class in ska_oso_oet.event.topics)

 	sb.lifecycle (class in ska_oso_oet.event.topics)

 	sb.lifecycle.allocated (class in ska_oso_oet.event.topics)

 	sb.lifecycle.observation (class in ska_oso_oet.event.topics)

 	sb.lifecycle.observation.finished (class in ska_oso_oet.event.topics)

 	sb.lifecycle.observation.finished.failed (class in ska_oso_oet.event.topics)

 	sb.lifecycle.observation.finished.succeeded (class in ska_oso_oet.event.topics)

 	sb.lifecycle.observation.started (class in ska_oso_oet.event.topics)

 	scan (class in ska_oso_oet.event.topics)

 	scan.lifecycle (class in ska_oso_oet.event.topics)

 	scan.lifecycle.configure (class in ska_oso_oet.event.topics)

 	scan.lifecycle.configure.complete (class in ska_oso_oet.event.topics)

 	scan.lifecycle.configure.failed (class in ska_oso_oet.event.topics)

 	scan.lifecycle.configure.started (class in ska_oso_oet.event.topics)

 	scan.lifecycle.end (class in ska_oso_oet.event.topics)

 	scan.lifecycle.end.failed (class in ska_oso_oet.event.topics)

 	scan.lifecycle.end.succeeded (class in ska_oso_oet.event.topics)

 	scan.lifecycle.start (class in ska_oso_oet.event.topics)

 	script_signal_handler() (in module ska_oso_oet.procedure.domain)

 	ScriptExecutionService (class in ska_oso_oet.procedure.application)

 	ScriptWorker (class in ska_oso_oet.procedure.domain)

 	SignalObject (class in ska_oso_oet.mptools)

 	
 ska_oso_oet

 	module

 	
 ska_oso_oet.activity

 	module

 	
 ska_oso_oet.activity.application

 	module

 	
 ska_oso_oet.activity.domain

 	module

 	
 ska_oso_oet.activity.ui

 	module

 	
 ska_oso_oet.event.topics

 	module

 	
 ska_oso_oet.features

 	module

 	
 	
 ska_oso_oet.mptools

 	module

 	
 ska_oso_oet.procedure

 	module

 	
 ska_oso_oet.procedure.application

 	module

 	
 ska_oso_oet.procedure.domain

 	module

 	
 ska_oso_oet.procedure.environment

 	module

 	
 ska_oso_oet.procedure.gitmanager

 	module

 	
 ska_oso_oet.procedure.ui

 	module

 	
 ska_oso_oet.utils.ui

 	module

 	start() (ska_oso_oet.procedure.application.ScriptExecutionService method)

 	StartProcessCommand (class in ska_oso_oet.procedure.application)

 	stop() (ska_oso_oet.procedure.application.ScriptExecutionService method)

 	(ska_oso_oet.procedure.domain.ProcessManager method)

 	stop_procs() (ska_oso_oet.mptools.MainContext method)

 	stop_queues() (ska_oso_oet.mptools.MainContext method)

 	StopProcessCommand (class in ska_oso_oet.procedure.application)

 	subarray (class in ska_oso_oet.event.topics)

 	subarray.configured (class in ska_oso_oet.event.topics)

 	subarray.fault (class in ska_oso_oet.event.topics)

 	subarray.resources (class in ska_oso_oet.event.topics)

 	subarray.resources.allocated (class in ska_oso_oet.event.topics)

 	subarray.resources.deallocated (class in ska_oso_oet.event.topics)

 	subarray.scan (class in ska_oso_oet.event.topics)

 	subarray.scan.finished (class in ska_oso_oet.event.topics)

 	subarray.scan.started (class in ska_oso_oet.event.topics)

 	subscribe_event() (ska_oso_oet.tango.TangoExecutor method)

 	(ska_oso_oet.tango.TangoExecutor.SingleQueueEventStrategy method)

 	SubscriptionManager (class in ska_oso_oet.tango)

 	summarise() (ska_oso_oet.activity.application.ActivityService method)

 	(ska_oso_oet.procedure.application.ScriptExecutionService method)

T

 	
 	TangoDeviceProxyFactory (class in ska_oso_oet.tango)

 	TangoExecutor (class in ska_oso_oet.tango)

 	TangoExecutor.SingleQueueEventStrategy (class in ska_oso_oet.tango)

 	term_handler() (ska_oso_oet.mptools.ProcWorker static method)

 	(ska_oso_oet.procedure.domain.ScriptWorker static method)

 	
 	terminate() (ska_oso_oet.mptools.Proc method)

 	TerminateInterrupt

 	TimerProcWorker (class in ska_oso_oet.mptools)

U

 	
 	unregister_observer() (ska_oso_oet.tango.Callback method)

 	(ska_oso_oet.tango.SubscriptionManager method)

 	unsubscribe_event() (ska_oso_oet.tango.TangoExecutor method)

 	(ska_oso_oet.tango.TangoExecutor.SingleQueueEventStrategy method)

 	
 	update_procedure() (in module ska_oso_oet.procedure.ui)

 	user (class in ska_oso_oet.event.topics)

 	user.script (class in ska_oso_oet.event.topics)

 	user.script.announce (class in ska_oso_oet.event.topics)

V

 	
 	value (ska_oso_oet.tango.LocalScanIdGenerator property)

 	(ska_oso_oet.tango.RemoteScanIdGenerator property)

W

 	
 	write_sbd_to_file() (ska_oso_oet.activity.application.ActivityService method)

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

nav.xhtml

 Table