
CSP.LMC Common Software
Documentation

Release 0.17.6

SKA Organization

Sep 20, 2023

CSP.LMC COMMON PACKAGE:

1 CSP.LMC Common Package Description 1

2 Architecture description 5

3 Project’s API 9

4 Indices and tables 31

Python Module Index 33

Index 35

i

ii

CHAPTER

ONE

CSP.LMC COMMON PACKAGE DESCRIPTION

General requirements for the monitor and control functionality are the same in both telescopes. In addition two of
three other CSP Sub-elements, namely PSS and PST, have the same functionality and use the same design for both the
telescopes.

Functionality common to Low and Mid CSP.LMC includes: communication framework, logging, archiving, alarm
generation, subarraying, some of the functionality realated to handling observing mode changes, Pulsar Search and
Pulsar Timing, and to some extent Very Long Baseline Interferometry (VLBI).

The difference between LOW and MID CSP.LMC is mostly due to the different receivers (dishes vs stations) and dif-
ferent CBF functionality and design. More than the 50% of the CSP.LMC functionality is common for both telescopes.

The CSP.LMC Common Package comprises all the software components and functionality common to LOW and MID
CSP.LMC and is used as a base for development of the Low CSP.LMC and Mid CSP.LMC software.

The CSP.LMC Common Package is delivered as a part of each CSP.LMC release, via a Python package that can be used
as required for maintenance and upgrade.

CSP.LMC implements a high level interface (API) that Telescope Manager (TM), or other authorized client, can use to
monitor and control CSP as a single instrument.

At the same time, CSP.LMC provides high level commands that the TM can use to sub-divide the array into up to 16
sub-arrays, i.e. to assign station/receptors to sub-arrays, and to operate each sub-array independently and concurrently
with all other sub-arrays.

The top-level software components provided by CSP.LMC API are:

• Csp Controller

• Csp Subarray

• CSP Alarm Handler (TBD)

• CSP Logger (TBD)

• CSP TANGO Facility Database (TBD)

• Input processor Capability (receptors/stations) (TBD)

• Search Beam Capability (TBD)

• Timing Beam Capability (TBD)

• VLBI Beam Capability (TBD)

Components listed above are implemented as TANGO devices, i.e. classes that implement standard TANGO API. The
CSP.LMC TANGO devices are based on the standard SKA1 TANGO Element Devices provided via the SKA Base
Classes package.

1

CSP.LMC Common Software Documentation, Release 0.17.6

1.1 CSP.LMC Controller

The CSP controller provides API for monitor and control the CSP sub-system. CSP Controller is the primary point of
access for CSP Monitor and Control.

CSP Controller maintains the pool of schedulable resources, and it can relies on the CSP CapabilityMonitor devices,
as needed. The CSP Controller implements CSP sub-system-level status indicators, configuration parameters, house-
keeping commands.

1.2 CSP.LMC Subarray

The core CSP functionality, configuration and execution of signal processing, is configured, controlled and monitored
via subarrays.

CSP Subarray makes provision to TM to configure a subarray, select Processing Mode and related parameters, specify
when to start/stop signal processing and/or generation of output products. TM accesses directly a CSP Subarray to:

• Assign resources

• Configure a scan

• Control and monitor states/operations

1.2.1 Resources assignment

The assignment of Capabilities to a subarray (subarray composition) is performed in advance of a scan configuration.
Assignable Capabilities for CSP Subarrays are:

• receptors (MID) or stations (LOW)

• tied-array beams: Search Beams, Timing Beams and Vlbi Beams.

In general resource assignment to a subarray is exclusive, but in some cases the same Capability instance may be used
in shared manner by more then one subarray.

1.2.2 Inherent Capabilities

Each CSP subarray has also a set of permanently assigned inherent Capabilities: the number and type is different for
LOW and MID instance.

Only the Inherent Capabilities related to the Processing Mode are common to both instances.

These are:

• Correlation

• PSS

• PST

• VLBI

An inherent Capability can be enabled or disabled, but cannot assigned or removed to/from a subarray.

2 Chapter 1. CSP.LMC Common Package Description

CSP.LMC Common Software Documentation, Release 0.17.6

1.2.3 Scan configuration

TM provides a complete scan configuration to a subarray via an ASCII JSON encoded string. Parameters specified
via a JSON string are implemented as TANGO Device attributes and can be accessed and modified directly using the
buil-in TANGO method write_attribute. When a complete and coherent scan configuration is received and the subarray
configuration (or re-configuration) completed, the subarray it’s ready to observe.

1.2.4 Control and Monitoring

Each CSP Subarray maintains and report the status and state transitions for the CSP subarray as a whole and for
individual assigned resources.

In addition to pre-configured status reporting, a CSP subarray makes provision for the TM and any authorized client,
to obtain the value of any subarray attribute.

1.3 CSP.LMC Capabilities

Capabilities represent the CSP schedulable resources and provide API that can be used to configure, monitor and
control resources that implement signal processing functionality. During normal operations, TM uses the sub-array
API to assign capabilities to the sub-array, configure sub-array Processing Mode, start and stop scan.

The CSP.LMC Common Package implements the capabilities that are shared between LOW and MID instances.

These are:

• CSP Search Beam Capability

• CSP Timing Beam Capability

• CSP VLBI Beam Capability

1.3.1 CSP.LMC Search Beam Capability

(To be implemented)

The Search Beam Capability exposes the attributes and commands to monitor and control beam-forming and PSS
processing in a single beam.

The mapping between an instance of the CSP Search Beam and the internal CSP Sub-element components performing
beam-forming and search is established at initialization and is permanent.

CSP.LMC SearchBeamCapability API Documentation

(To be implemented)

1.3. CSP.LMC Capabilities 3

CSP.LMC Common Software Documentation, Release 0.17.6

1.3.2 CSP.LMC Timing Beam Capability

(To be implemented)

The Timing Beam Capability exposes the attributes and commands to monitor and control beam-forming and PST
processing in a single beam.

The mapping between an instance of the CSP Search Beam and the internal CSP Sub-element components performing
beam-forming and search is established at initialization and is permanent.

CSP.LMC TimingBeamCapability API Documentation

(To be implemented)

1.3.3 CSP.LMC VLBI Beam Capability

(To be implemented)

The VLBI Beam Capability exposes the attributes and commands to monitor and control beamforming and VLBI
processing in a single beam.

CSP.LMC VlbiBeamCapability API Documentation

1.3.4 CSP.LMC CapabilityMonitor

(To be implemented)

CSP.LMC CapabilityMonitor API Documentation

(To be implemented)

4 Chapter 1. CSP.LMC Common Package Description

CHAPTER

TWO

ARCHITECTURE DESCRIPTION

The architecture of CSP.LMC is shared between the Controller and the Subarray. Both of them communicate with
three sub-systems: CBF, PSS and PST. The Controller must also access the CSP.LMC Subarrays and the Capabilities
device manager to report the information on the resources.

In the figure below, the C&C view of CSP.LMC controller is provided. The case of CSP.LMC subarray is identical,
where Subsystem’s Controller are substituted with correspondant Subsystem’s subarrays and no other CSP.LMC sub-
arrays are controlled. Further diagrams and a more comprehensive description of its component can be found at this
page.

The main operations of CSP are carried out into the three sub-elements. The interaction between the CSP Controller
and the subordinate sub-systems devices are mediated through a Python class that works as a proxy (Component Class).
This approach has the advantage of abstraction.

Since version 0.11.0 the state machine of ska-tango-base is no longer used. The motivation of this choice is described

5

https://confluence.skatelescope.org/pages/viewpage.action?pageId=148818174
https://confluence.skatelescope.org/pages/viewpage.action?pageId=148818174

CSP.LMC Common Software Documentation, Release 0.17.6

here. For this reason, custom state models are implemented for the Operational, Observing and Health State (CSP State
Models).

2.1 Interface to subsystem TANGO devices

Specific operations on a sub-element can be done by specializing the proxy class for each sub-system and the corre-
sponding functions are maintained in a specific part of the code.

2.1.1 Csp sub-system Component

The component class is a mediator between CSP.LMC and a Subsystem Device. It acts as an adapter
and allows, when needed, to execute specific instructions on a subsystem before invoking the required
command. In other words, its functionalities are:

• read and write of associated device’s attributes;

• command execution;

• subscription of attributes on the corresponding Tango Device.

2.1.2 Connector

Connector Class is class working as interface to the TANGO system. It relies on TangoClient class of ska-
tmc-common package developed by NCRA team, and it has the purpose to communicate with the device
proxy of Sub System TANGO device for all the functionalities used by the Component classe.

One of the main advantage to have this class, it the possibility to be easily mocked during the tests.

2.2 Commands execution

A command issued on the CSP Controller or CSP Subarray (controller command) by a TANGO client or the TM, breaks
up, nearly always, into several commands (>=3), one for each CSP sub-system. These commands (sub-commands or
component commands) are forwarded to the connected sub-sub-system.

The CSP Controller or Subarray TANGO device has to be able to invoke the command on a sub-element and monitors
its execution, detecting its progress and its final status (success/failure).

The sequence of operation to be performed are the following:

• check the initial device state to determine if the command is allowed;

• wait for the final status (the one expected after the end of successful execution) and detect possible conditions of
failures;

• implement support for timeout;

• report the end of the command.

The execution of a command is reported by the attribute CommandResult, which is a Tuple with the name of the
latest command invoked and a the resultCode ENUM (from ska-tango-base) that report the state of the command
(SUCCEEDED:0, STARTED:1, FAILED:3)

6 Chapter 2. Architecture description

https://confluence.skatelescope.org/display/SE/91+Beyond+the+State+Machine

CSP.LMC Common Software Documentation, Release 0.17.6

2.2.1 Command Observer

A specific Python class (CommandObserver Class), using the Observer Pattern Design, is used to detect the controller
command completion. Each component command is registered within the observer and notifies it when it has completed

A CSP Subarray command is considered completed when all the forwarded commands have ended. This component
monitors the execution of a CSP Subarray command, keeping track of the commands running on the CSP sub-systems.

When the execution of a command ends on a sub-system, the Component sub-system notifies this condition to the
CommandObserver invoking the notify method provided by this component.

This component implements also a set of attributes to report information about the status of each monitored sub-system
command, as for example the running and progress status.

At the end of the command, the Command Observer report the status of the command to the commandResult attribute.

2.2.2 Sub-system Command (Component Command)

The Component Command models a command acting on a sub-system Component instance. It implements
the logic to manage and control the command issued on a single component. The ComponentCommand
class, when instantiated for a specific command (On, Off , etc) contains all the information about the
request such as:

• the input parameters (if any)

• the Component to act on

• success, failure and timeout conditions

When the CSP Controller invokes the run method, each Component Command will run one (or more ac-
tions) on the associated Component object. When the Command ends, it reports to the Command Observer
the success or the failure.

2.3 Event Manager

Management of the events is delegated to a specific class (Event Manager Class). On initialization completion (when
the connection with the sub-system devices has been established) CSP.LMC devices (Controller and Subarray) select
which events are to be monitored on the sub-systems and delegate the subscription to the EventManager. The aim of
this class is to aggregate and report to TM the collective states and modes of the CSP (State, ObsState, HealthState,
ecc. . .).

In other words, Event Manager works on the behalf of the CSP.LMC to:

• subscribes the events for the main state and modes subsystem’s attributes (registering callbacks to the Compo-
nent’s classes);

• retrieve the value or errors reported by the callback registered with the events

• carry out particular policies of aggregation on attributes, reducing the load of information traveling to the sub-
array;

This object does not subscribe directly to a sub-system TANGO devices, but relies on the corresponding Component
objects to perform such work. The events received from each sub-system are pushed back to the CSP Subarray via
callbacks registered at subscription time.

2.3. Event Manager 7

CSP.LMC Common Software Documentation, Release 0.17.6

8 Chapter 2. Architecture description

CHAPTER

THREE

PROJECT’S API

3.1 CSP.LMC Common Devices API

3.1.1 CspController

3.1.2 CspSubarray

3.2 CSP.LMC modules API

3.2.1 Manager subpackage

Controller Component Manager

Subarray Component Manager

Event Manager

Component Manager Configurator

3.2.2 CSP Sub-system Component

Component

class ska_csp_lmc_common.component.Component(fqdn: str, name: str, weight: int = 0, logger=None)
Bases: object

Interface class to a sub-system device.

__init__(fqdn: str, name: str, weight: int = 0, logger=None)→ None
Initialize the component instance.

Parameters

• fqdn – the sub-system FQDN

• name – the component name (for ex. ‘cbf-ctrl’, ‘pss-ctrl’, ‘pst-beam-1’, etc)

• name – string

• weight – the sub-system ‘weight’. CBF sub-system has an higher impact on the CSP.LMC
functionalities.

9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

• logger – a logger for this instance

__hash__()

Define the __hash__() method for the Component class to use this object as a key in a python dictionary.

__eq__(other: Component)
Define the __eq__() method for the Component class to use this object as a key in a python dictionary.

__key()

Define the __key() method for the Component class to use this object as a key in a python dictionary.

property event_id: List[int]

Return the list of registered events.

Returns
A list with the ID of the events subscribed on the component.

property event_attrs: List[str]

Return the list of attributes subscribed for events.

Returns
A list with the attributes subscribed on the component.

property fqdn

Return the FQDN of the sub-system associated to the current component.

property proxy

Return the DeviceProxy with the CSP sub-system TANGO device if this is reachable, otherwise None.

property state

Return the sub-system state.

Returns
the sub-system State if updated via events or via direct read, UNKNOWN on failure

property health_state

Return the sub-system health_state.

Returns
the sub-system healthState if updated via events or via direct read, UNKNOWN on failure

property admin_mode

Return the sub-system health_state.

Returns
the sub-system adminmode if updated via events or via direct read, UNKNOWN on failure

_get_attribute(attr_name: str)→ Any
Return the value of the required attribute. If the attribute is not initialized, its value is retrieved via direct
read on the sub- system.name.

Parameters
attr_name – the name of the attribute

Returns
the attribute value on success, None otherwise

_update_component_info(recv_evt: tango.EventData, *new_evt: CspEvent)→ bool
Method to update the sub-system component manager internal status when an event generated by the sub-
system TANGO device is caught.

10 Chapter 3. Project’s API

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://pytango.readthedocs.io/en/stable/client_api/miscellaneous.html#tango.EventData
https://docs.python.org/3/library/functions.html#bool

CSP.LMC Common Software Documentation, Release 0.17.6

Parameters

• recv_evt – the event generated by the CSP sub-system TANGO device

• new_evt – the eve/nt forwarded back to the CSP TANGO device.

Returns
True to forward the event value back to the CSP device.

_handle_event_errors(recv_event, fwd_event: CspEvent)
Method to handle the error conditions on received events. Events with errors are not always propagated
back to the main CSP device.

Parameters
recv_event – the received event

Returns
True if the received event is forwarded back to the CSP device, otherwise False

_push_event(recv_event: tango.EventData)→ None
Callback function invoked when an event is received. The method checks for errors: when a loss of connec-
tion is detected, the value of the attribute is set to UNKNOWN, if the attribute support this value, otherwise
to None (with quality factor set to INVALID). In the first case the attribute is updated inside the component
class, too. After all checks, the method invokes the callback register at subscription, if any, passing as
argument an instance of the CspEvent class with the new value.

Parameters
recv_event – The received event data class

Returns
None

set_component_disconnected()

This method is called when the CSP TANGO Device adminMode is set to OFFLINE.

In this case the CSP Device componentManager does no longer monitor the component and its information
are reported as unknown. The component admin mode is left unchanged.

set_component_unknown(admin_mode_value: ska_control_model.AdminMode)→ None
This method is called when the component experiences a loss of connection. In this context, this method
sets the State and healthState attribute to UNKNOWN. For the other attributes, the value is set to the default
value None and quality_factor to ATTR_INVALID.

Parameters
args – an instance of the CspEvent class with the new values.

Returns
None

set_component_offline(admin_mode_value: ska_control_model.AdminMode)→ None
This method is called when the received event is related to a device not registered into the DB or its ad-
min mode is OFFLINE/NOT-FITTED In this context, this method sets the State or healthState attribute
to UNKNOWN. For the other attributes, the value is set to the default value None and quality_factor to
ATTR_INVALID.

Parameters
admin_mode_value – the value of the CSP sub-system device adminMode.

Returns
None

3.2. CSP.LMC modules API 11

https://pytango.readthedocs.io/en/stable/client_api/miscellaneous.html#tango.EventData
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

connect()→ Connector | None
Establish the connection with a sub-system device. Connection retries happen with a interval configured
via the device property PingConnectionTime. If the subordinate device is not registered into the TANGO
DB, the CSP Controller/Subarray device tries connection up to 3 times before throwing an exception and
considering the sub-system not on-line (available). This approach is related to the deployment procedure:
each sub-system configures the TANGO DB independently, through a configurator process. It may happen
that the CSP Controller/Subarray is already running while the configurator of one or more sub-systems is
still writing the TANGO DB. In this case, the CSP would not be able to detect the sub-system because
the DB is fully configured. Retry operations provide more time to wait for the end of the TANGO DB
configuration.

Returns
The Connector on success, otherwise None

Raise
a DevFailed exception on connection failure.

disconnect()→ None
Invalidate the connection with the CSP Sub-subsystem and report the main SKA SCM attributes accord-
ingly to the expected values.

read_attr(attribute: str)→ Any
Return the value of the requested attribute.

Parameters
attribute – the attribute name

Returns
the attribute value, if the attribute does exist on the sub-system device

Raise
a ValueError exception if the attribute does not exist or read failure.

write_attr(attribute: str, value: Any)→ None
Set the value of the requested attribute.

Parameters

• attribute – the attribute name

• value – the value to set

Raise
a ValueError exception if the attribute does not exist

force_attribute_update(attr_name: str)→ None
Update the attribute via a direct read. it also invokes the _push_event method to the EventManager internal
attribute value.

Parameters
attr_name – the name of the attribute forced to read.

run(command_name: str, async_flag: bool = True, argument: Optional[Any] = None, callback:
Optional[Callable] = None)→ None
Execute a command on the target device.

Parameters

• command_name – the command name

• async_flag – set the execution model (async/sync)

12 Chapter 3. Project’s API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

• argument – the command argument, if any

• callback – callable called when the command ends on the target device, if any

read_timeout(command_name: str)→ int
Read the timeout configured for a command.

Parameters
command_name – the command name

Returns
the timeout configured (in secs) or 0 on failure

subscribe_attribute(attr_name: str, event_type: tango.EventType, evt_mgr_callback: Optional[Callable]
= None)→ bool

Subscribe to any event.

Parameters

• attr_name – the attribute name

• event_type – the event type (CHANGE_EVENT, PERIODIC, etc..)

• evt_mgr_callback – the EventManager method called when the event is received.

Returns
True on subscription success, otherwise False.

unsubscribe_attribute(attr_list: Optional[List[str]] = None)→ None
Unsubscribe the event on the specified attributes. If the event_id dictionary is empty, the event_callback is
un-registered.

Parameters
attr_list – the list of attributes to un-subscribe event on. If the list is empty, all the sub-
scribed events on the sub-system are un-subscribed.

Returns
None (?) <=== CHECK

on(callback: Optional[Callable] = None)→ None
Define the behavior of the On command for a component. Override this method as required. This method
has been specialized to work with CSP sub-systems Controllers devices.

Parameters
callback – callable object invoked when command completes on the target TANGO Device.

standby(callback: Optional[Callable] = None)→ None
Define the behavior of the Standby command for a component. Override this method as required. This
method has been specialized to work with CSP sub-systems Controllers devices.

Parameters
callback – callable object invoked when command completes on the target TANGO Device.

off(callback: Optional[Callable] = None)→ None
Define the behavior of the Off command for a component. Override this method as required. This method
has been specialized to work with CSP sub-systems Controllers devices.

Parameters
callback – callable object invoked when command completes on the target TANGO Device.

3.2. CSP.LMC modules API 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.EventType
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

Observing Component

class ska_csp_lmc_common.observing_component.ObservingComponent(fqdn: str, name: str, weight: int
= 0, logger: Optional[Logger] =
None)

Bases: Component

Class to model a CSP subordinate observing device.

property capability_id: int

Return the capability device identification number.

Returns
The capability device ID.

property obs_state: ska_control_model.ObsState

Return the CSP Subarray sub-system obs_state.

Returns
the sub-system obsState if updated via events or via direct read, EMPTY on failure

set_tmp_command_name(value: str)
Set a temporary variable to modify the name of the command. It is needed since different version of base
classes have different command name (from low cbf (> 0.6.1))

Parameters
value – the value of the command name that have to be sent to the subarray

Returns
None

set_component_disconnected()

This method is called when the CSP TANGO Device adminMode is set to OFFLINE.

In this case the CSP Device componentManager does no longer monitor the component and its information
are reported as unknown. The component admin mode is not changed.

set_component_unknown(admin_mode_value: ska_control_model.AdminMode)→ None
Specialized version for observing sub-system components.

Parameters
admin_mode_value – the value of the CSP sub-system device adminMode.

Returns
None

set_component_offline(admin_mode_value: ska_control_model.AdminMode)→ None
Specialized version for observing sub-system components.

Parameters
admin_mode_value – the value of the CSP sub-system device adminMode.

configure(resources_dict: Dict, callback: Optional[Callable] = None)→ None
Run the command configure scan on the component.

Raise
a ValueError exception if the component is not in the proper state to run the command

14 Chapter 3. Project’s API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

gotoidle(callback: Optional[Callable] = None)→ None
Run the command gotoidle on the component.

Raise
a ValueError exception if the component is not in the proper state to run the command

assignresources(resources_dict: Dict, callback: Optional[Callable] = None)→ None
Run the command assignresources on the component.

Raise
a ValueError exception if the component is not in the proper state to run the command

releaseresources(resources_dict: Dict, callback: Optional[Callable] = None)→ None
Run the command releaseresources on the component.

Method to specialize into the specific component, if needed.

Raise
a ValueError exception if the component is not in the proper state to run the command

releaseallresources(callback: Optional[Callable] = None)→ None
Run the command releaseallresources on the component.

Method to specialize into the specific component, if needed.

Raise
a ValueError exception if the component is not in the proper state to run the command

CBF Controller Component

class ska_csp_lmc_common.controller.cbf_controller.CbfControllerComponent(fqdn, logger=None)
Bases: Component

PSS Controller Component

class ska_csp_lmc_common.controller.pss_controller.PssControllerComponent(fqdn: str, logger:
Optional[Logger] =
None)

Bases: Component

CBF Subarray Component

class ska_csp_lmc_common.subarray.cbf_subarray.CbfSubarrayComponent(fqdn, logger=None)
Bases: ObservingComponent

assignresources(resources_dict: Dict, callback: Optional[Callable] = None)→ None
Run the command assignresources on the component.

Raise
a ValueError exception if the component is not in the proper state to run the command

releaseresources(resources_dict: Dict, callback: Optional[Callable] = None)→ None
Run the command releaseresources on the component.

Method to specialize into the specific component, if needed.

3.2. CSP.LMC modules API 15

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

Raise
a ValueError exception if the component is not in the proper state to run the command

releaseallresources(callback: Optional[Callable] = None)
Run the command releaseallresources on the component.

Method to specialize into the specific component, if needed.

Raise
a ValueError exception if the component is not in the proper state to run the command

scan(scan_data: Dict, callback: Callable)→ None
Invoke the Scan command on the Mid CBF subarray.

Parameters

• scan_data – The dictionary with scan data

• callback – Method invoked when the commands end on the target device

update_pst_json_configuration(original_dict, updated_info)

configure(resources_dict: Dict, callback: Optional[Callable] = None)→ None
Specialization of the method from observing_component

gotoidle(callback: Optional[Callable] = None)→ None
Specialize the command gotoidle from observing_component.

PSS Subarray Component

PST Beam Component

3.2.3 Command subpackage

Component Command

class ska_csp_lmc_common.commands.component_command.ComponentCommand(name: str, component:
Component, resources:
Optional[Any] = None,
logger: Optional[Logger]
= None)

Bases: BaseComponentCommand

Abstract class to model a sub-system (or component) command.

A component command operates on a CSP subordinate sub-system.

__init__(name: str, component: Component, resources: Optional[Any] = None, logger: Optional[Logger]
= None)→ None

Class init method.

Parameters

• name – the command name

• component (Component) – the subsystem component on which the command acts

• resources – the command input argument, if any (default None)

• logger – the device logger

16 Chapter 3. Project’s API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

property component: Component

Return the sub-system receiver of the command.

Returns
the sub-system component the command acts on

run()→ None
Method to execute the command on the receiver component.

failure_detected()

Return whether a failure was detected during command execution.

Failure conditions are: - Timeout expired - Failure in command execution on a sub-system - Sub-system
reports FAULT obsState.

command_ended()

Helper function called when the command ends on the sub-system component. It evaluates the command
execution time and invokes the observer.

notify method.

_command_monitor()→ None
Thread target function.

Issue the command on the target sub-system component and monitor the command status, waiting for the
end of the command. The process is regulated via a timeout. The command completion (either with success
or failure) is notified to the main command observer (instantiate into the ComponentManager) invoking the
notify method on it. On exception, the failure_raised flag is set.

_run(argument: Optional[Any] = None, callback: Optional[Callable] = None)→ None
If not specialized simply calls the run method on the corresponding component.

Base Component Commands

class ska_csp_lmc_common.commands.base_commands.ComponentInit(component: Component, resources:
Optional[Any] = None, logger:
Optional[Logger] = None)

Class for handling the Subarray and Controller initialization and re- initialization.

_command_monitor()→ None
Base method overridden to handle the connection with a CSP sub- system TANGO devices.

succeeded()

Does nothing but needed because inherit abstract class.

class ska_csp_lmc_common.commands.base_commands.ComponentDisconnect(component: Component,
resources: Optional[Any]
= None, logger:
Optional[Logger] = None)

Class for handling the Subarray and Controller initialization and re- initialization.

_run(argument: Optional[Any] = None, callback: Optional[Callable] = None)→ None
If not specialized simply calls the run method on the corresponding component.

succeeded()

Does nothing but needed because inherit abstract class.

3.2. CSP.LMC modules API 17

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

class ska_csp_lmc_common.commands.base_commands.ComponentOn(component: Component, logger:
Optional[Logger] = None)

Class specialized to handle the On of a sub-system.

_run(argument: Optional[List] = None, callback: Optional[Callable] = None)→ None
If not specialized simply calls the run method on the corresponding component.

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

class ska_csp_lmc_common.commands.base_commands.ComponentOff(component: Component, logger:
Optional[Logger] = None)

Class specialized to handle the Off of a sub-system.

_run(argument: Optional[List] = None, callback: Optional[Callable] = None)→ None
If not specialized simply calls the run method on the corresponding component.

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

class ska_csp_lmc_common.commands.base_commands.ComponentStandby(component: Component,
logger: Optional[Logger] =
None)

Class specialized to handle the Standby of a sub-system.

_run(argument: Optional[Any] = None, callback: Optional[Callable] = None)→ None
If not specialized simply calls the run method on the corresponding component.

succeeded()

Return whether the command executed on a CSP sub-system completes successfully.

class ska_csp_lmc_common.commands.base_commands.ComponentReset(component: Component, logger:
Optional[Logger] = None)

Class specialized to handle the Reset of a sub-system.

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

class ska_csp_lmc_common.commands.base_commands.ComponentNop(component: Component, logger:
Optional[Logger] = None)

Class for Not Operative Command (NOP).

property expected_condition

Return the expected condition

endscan_request_pending()

Whether the endscan event is set

_run_nop_command()

Whether the NOP command can be executed

When a NOP command is part of an interruptable command (Configure, Scan, ObsReset) the execution of
its run method is skipped when:

• no event is set

• an event is set but the command the NOP command is related to
another event

18 Chapter 3. Project’s API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger

CSP.LMC Common Software Documentation, Release 0.17.6

run()→ None
Execute a wait loop.

This command, when not skipped, waits for a specific condition.

succeeded()→ bool
Return whether the required conditions are satisfied.

If no conditions are specified, the command waits for the configured timeout.

Observing Component Commands

This module includes the ComponentCommand specialized classes.

AssignResources

class ska_csp_lmc_common.commands.observing_commands.ComponentAssign(receiver:
ObservingComponent,
resources: str, logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle the AssignResources command on a CSP sub-system component.

_run(argument: Dict, callback: Optional[Callable] = None)→ None
The method is specialized to invoke the AssignResources command on the CSP sub-system component:

self._component.assignresources(argument, callback=callback)

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

The AssignResources command on a sub-system ends with success when the following condition is satis-
fied:

self._component.obs_state == ObsState.IDLE

ReleaseResources

class ska_csp_lmc_common.commands.observing_commands.ComponentRelease(component:
ObservingComponent,
resources:
Optional[Any] = None,
logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle ReleaseResources command on a CSP sub-system component.

_run(argument: dict, callback: Callable)→ None
The method is specialized to invoke the ReleaseResources command on the CSP sub-system component:

self._component.releaseresources(argument, callback=callback)

3.2. CSP.LMC modules API 19

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

The ReleaseResources command on a sub-system ends with success when the following condition is satis-
fied:

self._component.obs_state == ObsState.EMPTY or self._component.obs_state == Ob-
sState.IDLE

ReleaseAllResources

class ska_csp_lmc_common.commands.observing_commands.ComponentReleaseAll(component: Observ-
ingComponent,
logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle Subarray ReleaseAllResources command.

_run(argument: Optional[Any] = None, callback: Optional[Callable] = None)→ None
The method is specialized to invoke the ReleaseAllResources command on the CSP sub-system component:

self._component.releaseallresources(callback=callback)

succeeded()

Return whether the command executed on a CSP sub-system completes successfully.

The ReleaseAllResources command on a sub-system ends with success when the following condition is
satisfied:

component.obs_state == ObsState.EMPTY

Configure

class ska_csp_lmc_common.commands.observing_commands.ComponentConfigure(component:
ObservingComponent,
resources, logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle Configure command on a CSP sub-system component.

_run(argument: Dict, callback: Optional[Callable] = None)→ None
Invoke the command on the CSP sub-system.

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully. The Configure com-
mand on a sub-system ends with success when the following condition is satisfied:

self._component.obs_state == ObsState.READY

20 Chapter 3. Project’s API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

CSP.LMC Common Software Documentation, Release 0.17.6

failure_detected()

Return whether a failure was detected during command execution.

Failure conditions are: - Timeout expired - Failure in command execution on a sub-system - Sub-system
reports FAULT obsState.

Scan

class ska_csp_lmc_common.commands.observing_commands.ComponentScan(component:
ObservingComponent,
resources: Any, logger:
Optional[Logger] = None)

Bases: ComponentCommand

Class to handle Scan command on a CSP sub-system component.

_run(argument: Any, callback: Optional[Callable] = None)→ None
The method is specialized to invoke the Scan command on the CSP sub-system component.

command_ended()

Helper function called when the command ends on the sub-system component. It evaluates the command
execution time and invokes the observer.

notify method.

succeeded()→ None
This command does not specialize the succeeded method.

failure_detected()→ None
Return whether a failure was detected during command execution.

Failure conditions are: - Timeout expired - Failure in command execution on a sub-system - Sub-system
reports FAULT obsState.

EndScan

class ska_csp_lmc_common.commands.observing_commands.ComponentEndScan(component:
ObservingComponent,
logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle the EndScan command on a sub-system component.

succeeded()

Return whether the command executed on a CSP sub-system completes successfully.

The EndScan command on a sub-system ends with success when the following condition is satisfied:

self._component.obs_state == ObsState.READY

failure_detected()

Return whether a failure was detected during command execution.

Failure conditions are: - Timeout expired - Failure in command execution on a sub-system - Sub-system
reports FAULT obsState.

3.2. CSP.LMC modules API 21

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger

CSP.LMC Common Software Documentation, Release 0.17.6

Abort

class ska_csp_lmc_common.commands.observing_commands.ComponentAbort(component:
ObservingComponent,
logger: Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle Abort command on a sub-system component.

succeeded()

Return whether the command executed on a CSP sub-system completes successfully.

The Abort command on a sub-system ends with success when the following condition is satisfied:

self._component.obs_state == ObsState.ABORTED

ObsReset

class ska_csp_lmc_common.commands.observing_commands.ComponentObsReset(component:
ObservingComponent,
logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle Subarray ObsReset command.

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

The Abort command on a sub-system ends with success when the following condition is satisfied:

self._component.obs_state == ObsState.IDLE

Restart

class ska_csp_lmc_common.commands.observing_commands.ComponentRestart(component:
ObservingComponent,
logger:
Optional[Logger] =
None)

Bases: ComponentCommand

Class to handle Subarray Restart command.

succeeded()→ bool
Return whether the command executed on a CSP sub-system completes successfully.

The Restart command on a sub-system ends with success when the following condition is satisfied:

self._component.obs_state == ObsState.EMPTY

22 Chapter 3. Project’s API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool

CSP.LMC Common Software Documentation, Release 0.17.6

Macro Component Commands

class ska_csp_lmc_common.commands.macro_command.MacroComponentCommand(name: str,
command_factory:
CommandFactory,
notify_callback:
Callable, macro_items:
List[MacroCommandItem],
timeout: Optional[int] =
0, logger:
Optional[Logger] =
None, abort_event:
Optional[Event] =
None)

Bases: BaseComponentCommand

Class modeling a Macro command.

A Macro-command is a set of sub-system or component commands grouped together as a single command and
executed in sequence, one after the other, to accomplish a CSP task. Sub-system commands can have different
sub-system targets.

__init__(name: str, command_factory: CommandFactory, notify_callback: Callable, macro_items:
List[MacroCommandItem], timeout: Optional[int] = 0, logger: Optional[Logger] = None,
abort_event: Optional[Event] = None)

Parameters

• name – the name of the macro command.

• command_factory – the factory class to create the CSP Component commands classes.

• notify_callback – the observer method invoked at command completion.

• macro_items – a list of MacroCommandItem entries

• logger – the device logger target

• abort_event – the event set on abort request.

property command_in_execution

Return the command currently in execution.

property is_running: bool

Whether the macro-command is running.

The macro command is running if at least one of its components command is in running state

TO REMOVE when move to BC13

property failure_raised: bool

Whether the macro-command failure flag is set.

The macro command failure flag is set when at least one of its components command is failed.

TO REMOVE when move to BC13

property timeout_expired: bool

Whether the macro-command timeout expired flag is set.

The macro command timeout flag is set when at least one of its components command elapsed its timeout.

3.2. CSP.LMC modules API 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CSP.LMC Common Software Documentation, Release 0.17.6

property aborted: bool

Flag to report whether an abort request has been process by the CSP sub-system.

Returns
whether an abort request has been processed by the sub-system.

add(command: ComponentCommand)
Add a sub-task command

tag()

Tag the command of the macro command Each component command is tagged with two numbers: - the
order in the list of execution - the total number of commands belonging to the macro command

command_ended()

Invoked on command completion.

status_ok()

Invoked on command completion.

_command_monitor()

Method to run and monitor the execution of a macro command.

Component commands are executed one after the other. Each component command notifies its end to the
command observer. If one command fails, the other commands are skipped.

TODO: This behavior does not apply to all the type of commands: need to configure this functionality.

run()→ None
Method to execute the command on the receiver component.

3.2.4 CSP State Models

Operational State Model

class ska_csp_lmc_common.model.OpStateModel(op_state_init: tango.DevState, op_state_changed_callback:
Callable[[tango.DevState], None], logger:
Optional[Logger] = None)

Bases: object

A simple operational state model.

• DevState.DISABLE – when communication with the component is not established.

• DevState.FAULT – when the component has faulted

__init__(op_state_init: tango.DevState, op_state_changed_callback: Callable[[tango.DevState], None],
logger: Optional[Logger] = None)→ None

Initialise a new instance.

Parameters

• op_state_init – the initial state of the component under control.

• op_state_changed_callback – callback to be called whenever there is a change to eval-
uated operational state.

• logger – a logger for this instance

24 Chapter 3. Project’s API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#object
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

property faulty

Return whether the componend is experiencing a faulty condition or not.

Returns
whether the component is in fault.

property disabled: bool

Return whether the component is disabled or not.

Returns
whether the component is disabled.

property op_state: tango.DevState

Return the component operational state.

Returns
the operational state.

update_op_state()→ None
Update operational state.

This method calls the :py:meth:evaluate_op_state method to figure out what the new operational state
should be, and then updates the state attribute, calling the callback if required.

evaluate_op_state()→ tango.DevState
Re-evaluate the operational state.

This method contains the logic for evaluating the state.

This method should be extended by subclasses in order to define how state is evaluated by their particular
device.

If the CSP device opState is in FAULT for an internal error (i.e not depending from the opStates of the CSP
sub-systems) this state has to be maintained. The only way to exit from this state is to Reset/Reinit the CSP
device. In this case the faulty flag is reset to False.

Returns
the new state state.

component_fault(faulty: bool)→ None
Handle a component experiencing or recovering from a fault.

This method is called when the component goes into or out of FAULT state.

Parameters
faulty – whether the component has faulted or not

is_disabled(disabled: bool)→ None
Handle disabling the monitoring functionalities of a TANGO device.

This method is called when the communication between the TANGO device and the component under
controller is disabled/enabled via the setting of the adimnistrative mode.

Parameters
disabled – whether the communication between the component and the controlling TANGO
device is disabled.

perform_action(action: str)→ None
Not operative method.

This method is required by the CspSubarray InitCommand class that must inherit from the SKABaseDe-
vice.InitCommand because all the SKA attributes and logging are initialized there.

3.2. CSP.LMC modules API 25

https://docs.python.org/3/library/functions.html#bool
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/constants.html#None
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

Health State Model

class ska_csp_lmc_common.model.HealthStateModel(init_state: ska_control_model.HealthState,
health_changed_callback:
Callable[[ska_control_model.HealthState], None],
logger: Optional[Logger] = None)

Bases: object

A simple health model the supports.

• HealthState.OK – when the component is fully operative.

• HealthState.DEGRADED – when the component is partially operative.

• HealthState.UNKNOWN – when communication with the component is not established.

• HealthState.FAILED – when the component has faulted

__init__(init_state: ska_control_model.HealthState, health_changed_callback:
Callable[[ska_control_model.HealthState], None], logger: Optional[Logger] = None)→ None

Initialise a new instance.

Parameters

• init_state – The health state of the component under control at initialization.

• health_changed_callback – callback to be called whenever there is a change to this
this health model’s evaluated health state.

• logger (an instance of :py:class`logging.Logger`, or an object that
implements the same interface) – a logger for this instance

property faulty

Return whether the componend is experiencing a faulty condition or not.

Returns
whether the component is in fault.

property disabled

Return whether the component is disabled or not.

Returns
whether the component is disabled

property health_state: ska_control_model.HealthState

Return the health state of the component under control.

Returns
the health state.

update_health()→ None
Update health state.

This method calls the :py:meth:evaluate_health method to figure out what the new health state should
be, and then updates the health_state attribute, calling the callback if required.

evaluate_health()→ ska_control_model.HealthState
Re-evaluate the health state.

This method contains the logic for evaluating the health.

This method should be extended by subclasses in order to define how health is evaluated by their particular
device.

26 Chapter 3. Project’s API

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

Returns
the new health state.

component_fault(fault: bool)→ None
Handle a component experiencing or recovering from a fault.

This is a callback hook that is called when the component goes into or out of FAULT state.

Parameters
fault – whether the component has faulted or not

is_disabled(disabled: bool)→ None
Handle change in communication with the component.

Parameters
disabled – whether communications with the component is established.

Observing State Model

class ska_csp_lmc_common.model.ObsStateModel(obs_state_init: ska_control_model.ObsState,
obs_state_changed_callback:
Callable[[ska_control_model.ObsState], None], logger:
Optional[Logger] = None)

Bases: object

A simple observing state model for observing devices.

__init__(obs_state_init: ska_control_model.ObsState, obs_state_changed_callback:
Callable[[ska_control_model.ObsState], None], logger: Optional[Logger] = None)→ None

Initialise a new instance.

Parameters

• obs_state_int – the observing state of the component under control at initialization.

• obs_state_changed_callback – callback to be called whenever the observing state of
the component under control (as evaluated by this model) changes.

• logger – a logger for this instance

property faulty

Return whether the component is experiencing a faulty condition or not.

Returns
whether the component is in fault.

property action_driven

Return whether the updating of the component observing State is driven by actions or events (default).

Returns
whether the component obseving state update is driven by actions or events.

property obs_state: ska_control_model.ObsState

The observing state of the component under control of the CSP Subarray TANGO Device.

Getter
the current observing state

Setter
set the component observing state to the updated value and the device callback is invoked, if
defined.

3.2. CSP.LMC modules API 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

_update_obs_state(obs_state)→ None
Helper method to handle the update of the observing state of a component and the device that controls it.

pylint: disable-next=fixme TODO: lock the TANGO Device AutoTangoMonitor otherwise there race
conditions can happen.

update_obs_state()→ None
Update the component observing state.

This method calls the :py:meth:evaluate_obs_state method to figure out what the new obsstate state
should be, and then updates the obs_state attribute, calling the callback if required.

evaluate_obs_state()→ ska_control_model.ObsState
Re-evaluate the component observing state.

This method contains the basic logic for evaluating the observing state.

This method should be extended by subclasses in order to define how observing state is evaluated by their
particular device.

Returns
the new observing state.

component_fault(faulty: bool)→ None
Handle a component experiencing or recovering from a fault.

This method is called when the component goes into or out of FAULT state.

Parameters
faulty – whether the component has faulted or not.

component_disabled(disabled: bool)→ None
Handle the monitoring functionalities of a TANGO Device.

This method is called when the communication between the TANGO device and the component under
controller is disabled/enabled via the setting of the administrative mode.

Parameters
disabled – whether the communication between the component and the controlling device
is disabled.

component_action_driven(action_driven: bool)→ None
Whether the updating of the component observing state is driven by actions or events (default).

Parameters
action_driven – configure the model behavior to update the observing state.

perform_action(action: str)→ None
Perform action to trigger the obs-state-model To be implemented

Parameters
action – The action to perform: invoked or completed

28 Chapter 3. Project’s API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

Controller Operational State Model

class ska_csp_lmc_common.controller.controller_op_state.ControllerOpStateModel(op_state_init:
tango.DevState,
op_state_changed_callback:
Callable[[tango.DevState],
None],
logger: Op-
tional[Logger]
= None)

Bases: OpStateModel

A simple operational state model that supports.

• DevState.ON – when the component is powered on.

• DevState.OFF – when the component is powered off.

• DevState.STANDBY – when the component is low-power mode.

• DevState.ON – when the component is powered on.

• DevState.DISABLE – when the component is in OFFLINE administrative mode.

• DevState.UNKNOWN – when communication with the component is not established.

• DevState.FAILED – when the component has faulted

property op_state: tango.DevState

Return the operational state.

Returns
the operational state state.

Return type
DevState

update_op_state()→ None
Update the operational state.

This method calls the :py:meth:evaluate_op_state method to figure out what the new operational state
should be, and then updates the op_state attribute, calling the TANGO device callback if required.

evaluate_op_state()→ tango.DevState
Compute overall operational state of the CSP controller device based on the fault and communication status
of the controller overall, together with the aggregation of the operational states of the subordinate sub-
systems components.

Returns
an overall operational state of the controller.

Return type
DevState

component_op_state_changed(component: Component, op_state: DevState | None)→ None
Handle change in CSP sub-system ctrl operational state.

This is a callback hook, called by the EventManager when the operational state of a CSP sub-system ctrl
changes.

Parameters

3.2. CSP.LMC modules API 29

https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/constants.html#None
https://pytango.readthedocs.io/en/stable/client_api/other.html#tango.DevState
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CSP.LMC Common Software Documentation, Release 0.17.6

• component (Component) – the sub-system component whose operational state has
changed

• op_state (DevState) – the new operational state of the sub-system ctrl.

Controller Health State Model

class ska_csp_lmc_common.controller.controller_health_state.ControllerHealthModel(init_state:
ska_control_model.HealthState,
health_changed_callback:
Callable[[ska_control_model.HealthState],
None],
log-
ger=None)

Bases: HealthStateModel

A simple health state model for the CSP Controller that supports.

• HealthState.OK – when the component is fully operative.

• HealthState.DEGRADED – when the component is partially operative.

• HealthState.UNKNOWN – when communication with the component is not established.

• HealthState.FAILED – when the component has faulted

evaluate_health()→ ska_control_model.HealthState
Compute overall health of the controller.

The overall health is based on the fault and communication status of the CSP sub-system controllers.

Returns
an overall health of the controller

Return type
HealthState

component_health_changed(component: Component, health_state: HealthState | None)→ None
Handle change in the health of the CSP subordinate sub-systems controllers.

This is a callback hook, called by the EventManager when the health and/or operational state of one of the
CSP subordinate sub-system changes.

Parameters

• component (Component) – the sub-system component whose health has changed.

• health_state (HealthState) – the new health state of the CSP sub-system.

Subarray Operational State Model

Subarray Health State Model

Subarray Observing State Model

30 Chapter 3. Project’s API

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

31

CSP.LMC Common Software Documentation, Release 0.17.6

32 Chapter 4. Indices and tables

PYTHON MODULE INDEX

s
ska_csp_lmc_common.commands, 16

33

CSP.LMC Common Software Documentation, Release 0.17.6

34 Python Module Index

INDEX

Symbols
__eq__() (ska_csp_lmc_common.component.Component

method), 10
__hash__() (ska_csp_lmc_common.component.Component

method), 10
__init__() (ska_csp_lmc_common.commands.component_command.ComponentCommand

method), 16
__init__() (ska_csp_lmc_common.commands.macro_command.MacroComponentCommand

method), 23
__init__() (ska_csp_lmc_common.component.Component

method), 9
__init__() (ska_csp_lmc_common.model.HealthStateModel

method), 26
__init__() (ska_csp_lmc_common.model.ObsStateModel

method), 27
__init__() (ska_csp_lmc_common.model.OpStateModel

method), 24

M
module
ska_csp_lmc_common.commands, 16

S
ska_csp_lmc_common.commands

module, 16

35

	CSP.LMC Common Package Description
	CSP.LMC Controller
	CSP.LMC Subarray
	Resources assignment
	Inherent Capabilities
	Scan configuration
	Control and Monitoring

	CSP.LMC Capabilities
	CSP.LMC Search Beam Capability
	CSP.LMC SearchBeamCapability API Documentation

	CSP.LMC Timing Beam Capability
	CSP.LMC TimingBeamCapability API Documentation

	CSP.LMC VLBI Beam Capability
	CSP.LMC VlbiBeamCapability API Documentation

	CSP.LMC CapabilityMonitor
	CSP.LMC CapabilityMonitor API Documentation

	Architecture description
	Interface to subsystem TANGO devices
	Csp sub-system Component
	Connector

	Commands execution
	Command Observer
	Sub-system Command (Component Command)

	Event Manager

	Project’s API
	CSP.LMC Common Devices API
	CspController
	CspSubarray

	CSP.LMC modules API
	Manager subpackage
	Controller Component Manager
	Subarray Component Manager
	Event Manager
	Component Manager Configurator

	CSP Sub-system Component
	Component
	Observing Component
	CBF Controller Component
	PSS Controller Component
	CBF Subarray Component
	PSS Subarray Component
	PST Beam Component

	Command subpackage
	Component Command
	Base Component Commands
	Observing Component Commands
	AssignResources
	ReleaseResources
	ReleaseAllResources
	Configure
	Scan
	EndScan
	Abort
	ObsReset
	Restart

	Macro Component Commands

	CSP State Models
	Operational State Model
	Health State Model
	Observing State Model
	Controller Operational State Model
	Controller Health State Model
	Subarray Operational State Model
	Subarray Health State Model
	Subarray Observing State Model

	Indices and tables
	Python Module Index
	Index

