
CSP.LMC Common Software
Documentation

Release 0.17.2

SKA Organization

Jul 06, 2023





CSP.LMC COMMON PACKAGE:

1 CSP.LMC Common Package Description 1

2 Architecture description 5

3 Project’s API 9

4 Indices and tables 11

i



ii



CHAPTER

ONE

CSP.LMC COMMON PACKAGE DESCRIPTION

General requirements for the monitor and control functionality are the same in both telescopes. In addition two of
three other CSP Sub-elements, namely PSS and PST, have the same functionality and use the same design for both the
telescopes.

Functionality common to Low and Mid CSP.LMC includes: communication framework, logging, archiving, alarm
generation, subarraying, some of the functionality realated to handling observing mode changes, Pulsar Search and
Pulsar Timing, and to some extent Very Long Baseline Interferometry (VLBI).

The difference between LOW and MID CSP.LMC is mostly due to the different receivers (dishes vs stations) and dif-
ferent CBF functionality and design. More than the 50% of the CSP.LMC functionality is common for both telescopes.

The CSP.LMC Common Package comprises all the software components and functionality common to LOW and MID
CSP.LMC and is used as a base for development of the Low CSP.LMC and Mid CSP.LMC software.

The CSP.LMC Common Package is delivered as a part of each CSP.LMC release, via a Python package that can be used
as required for maintenance and upgrade.

CSP.LMC implements a high level interface (API) that Telescope Manager (TM), or other authorized client, can use to
monitor and control CSP as a single instrument.

At the same time, CSP.LMC provides high level commands that the TM can use to sub-divide the array into up to 16
sub-arrays, i.e. to assign station/receptors to sub-arrays, and to operate each sub-array independently and concurrently
with all other sub-arrays.

The top-level software components provided by CSP.LMC API are:

• Csp Controller

• Csp Subarray

• CSP Alarm Handler (TBD)

• CSP Logger (TBD)

• CSP TANGO Facility Database (TBD)

• Input processor Capability (receptors/stations) (TBD)

• Search Beam Capability (TBD)

• Timing Beam Capability (TBD)

• VLBI Beam Capability (TBD)

Components listed above are implemented as TANGO devices, i.e. classes that implement standard TANGO API. The
CSP.LMC TANGO devices are based on the standard SKA1 TANGO Element Devices provided via the SKA Base
Classes package.

1



CSP.LMC Common Software Documentation, Release 0.17.2

1.1 CSP.LMC Controller

The CSP controller provides API for monitor and control the CSP sub-system. CSP Controller is the primary point of
access for CSP Monitor and Control.

CSP Controller maintains the pool of schedulable resources, and it can relies on the CSP CapabilityMonitor devices,
as needed. The CSP Controller implements CSP sub-system-level status indicators, configuration parameters, house-
keeping commands.

1.2 CSP.LMC Subarray

The core CSP functionality, configuration and execution of signal processing, is configured, controlled and monitored
via subarrays.

CSP Subarray makes provision to TM to configure a subarray, select Processing Mode and related parameters, specify
when to start/stop signal processing and/or generation of output products. TM accesses directly a CSP Subarray to:

• Assign resources

• Configure a scan

• Control and monitor states/operations

1.2.1 Resources assignment

The assignment of Capabilities to a subarray (subarray composition) is performed in advance of a scan configuration.
Assignable Capabilities for CSP Subarrays are:

• receptors (MID) or stations (LOW)

• tied-array beams: Search Beams, Timing Beams and Vlbi Beams.

In general resource assignment to a subarray is exclusive, but in some cases the same Capability instance may be used
in shared manner by more then one subarray.

1.2.2 Inherent Capabilities

Each CSP subarray has also a set of permanently assigned inherent Capabilities: the number and type is different for
LOW and MID instance.

Only the Inherent Capabilities related to the Processing Mode are common to both instances.

These are:

• Correlation

• PSS

• PST

• VLBI

An inherent Capability can be enabled or disabled, but cannot assigned or removed to/from a subarray.

2 Chapter 1. CSP.LMC Common Package Description



CSP.LMC Common Software Documentation, Release 0.17.2

1.2.3 Scan configuration

TM provides a complete scan configuration to a subarray via an ASCII JSON encoded string. Parameters specified
via a JSON string are implemented as TANGO Device attributes and can be accessed and modified directly using the
buil-in TANGO method write_attribute. When a complete and coherent scan configuration is received and the subarray
configuration (or re-configuration) completed, the subarray it’s ready to observe.

1.2.4 Control and Monitoring

Each CSP Subarray maintains and report the status and state transitions for the CSP subarray as a whole and for
individual assigned resources.

In addition to pre-configured status reporting, a CSP subarray makes provision for the TM and any authorized client,
to obtain the value of any subarray attribute.

1.3 CSP.LMC Capabilities

Capabilities represent the CSP schedulable resources and provide API that can be used to configure, monitor and
control resources that implement signal processing functionality. During normal operations, TM uses the sub-array
API to assign capabilities to the sub-array, configure sub-array Processing Mode, start and stop scan.

The CSP.LMC Common Package implements the capabilities that are shared between LOW and MID instances.

These are:

• CSP Search Beam Capability

• CSP Timing Beam Capability

• CSP VLBI Beam Capability

1.3.1 CSP.LMC Search Beam Capability

(To be implemented)

The Search Beam Capability exposes the attributes and commands to monitor and control beam-forming and PSS
processing in a single beam.

The mapping between an instance of the CSP Search Beam and the internal CSP Sub-element components performing
beam-forming and search is established at initialization and is permanent.

CSP.LMC SearchBeamCapability API Documentation

(To be implemented)

1.3. CSP.LMC Capabilities 3



CSP.LMC Common Software Documentation, Release 0.17.2

1.3.2 CSP.LMC Timing Beam Capability

(To be implemented)

The Timing Beam Capability exposes the attributes and commands to monitor and control beam-forming and PST
processing in a single beam.

The mapping between an instance of the CSP Search Beam and the internal CSP Sub-element components performing
beam-forming and search is established at initialization and is permanent.

CSP.LMC TimingBeamCapability API Documentation

(To be implemented)

1.3.3 CSP.LMC VLBI Beam Capability

(To be implemented)

The VLBI Beam Capability exposes the attributes and commands to monitor and control beamforming and VLBI
processing in a single beam.

CSP.LMC VlbiBeamCapability API Documentation

1.3.4 CSP.LMC CapabilityMonitor

(To be implemented)

CSP.LMC CapabilityMonitor API Documentation

(To be implemented)

4 Chapter 1. CSP.LMC Common Package Description



CHAPTER

TWO

ARCHITECTURE DESCRIPTION

The architecture of CSP.LMC is shared between the Controller and the Subarray. Both of them communicate with
three sub-systems: CBF, PSS and PST. The Controller must also access the CSP.LMC Subarrays and the Capabilities
device manager to report the information on the resources.

In the figure below, the C&C view of CSP.LMC controller is provided. The case of CSP.LMC subarray is identical,
where Subsystem’s Controller are substituted with correspondant Subsystem’s subarrays and no other CSP.LMC sub-
arrays are controlled. Further diagrams and a more comprehensive description of its component can be found at this
page.

The main operations of CSP are carried out into the three sub-elements. The interaction between the CSP Controller
and the subordinate sub-systems devices are mediated through a Python class that works as a proxy (Component Class).
This approach has the advantage of abstraction.

Since version 0.11.0 the state machine of ska-tango-base is no longer used. The motivation of this choice is described

5

https://confluence.skatelescope.org/pages/viewpage.action?pageId=148818174
https://confluence.skatelescope.org/pages/viewpage.action?pageId=148818174


CSP.LMC Common Software Documentation, Release 0.17.2

here. For this reason, custom state models are implemented for the Operational, Observing and Health State (CSP State
Models).

2.1 Interface to subsystem TANGO devices

Specific operations on a sub-element can be done by specializing the proxy class for each sub-system and the corre-
sponding functions are maintained in a specific part of the code.

2.1.1 Csp sub-system Component

The component class is a mediator between CSP.LMC and a Subsystem Device. It acts as an adapter
and allows, when needed, to execute specific instructions on a subsystem before invoking the required
command. In other words, its functionalities are:

• read and write of associated device’s attributes;

• command execution;

• subscription of attributes on the corresponding Tango Device.

2.1.2 Connector

Connector Class is class working as interface to the TANGO system. It relies on TangoClient class of ska-
tmc-common package developed by NCRA team, and it has the purpose to communicate with the device
proxy of Sub System TANGO device for all the functionalities used by the Component classe.

One of the main advantage to have this class, it the possibility to be easily mocked during the tests.

2.2 Commands execution

A command issued on the CSP Controller or CSP Subarray (controller command) by a TANGO client or the TM, breaks
up, nearly always, into several commands (>=3), one for each CSP sub-system. These commands (sub-commands or
component commands) are forwarded to the connected sub-sub-system.

The CSP Controller or Subarray TANGO device has to be able to invoke the command on a sub-element and monitors
its execution, detecting its progress and its final status (success/failure).

The sequence of operation to be performed are the following:

• check the initial device state to determine if the command is allowed;

• wait for the final status (the one expected after the end of successful execution) and detect possible conditions of
failures;

• implement support for timeout;

• report the end of the command.

The execution of a command is reported by the attribute CommandResult, which is a Tuple with the name of the
latest command invoked and a the resultCode ENUM (from ska-tango-base) that report the state of the command
(SUCCEEDED:0, STARTED:1, FAILED:3)

6 Chapter 2. Architecture description

https://confluence.skatelescope.org/display/SE/91+Beyond+the+State+Machine


CSP.LMC Common Software Documentation, Release 0.17.2

2.2.1 Command Observer

A specific Python class (CommandObserver Class), using the Observer Pattern Design, is used to detect the controller
command completion. Each component command is registered within the observer and notifies it when it has completed

A CSP Subarray command is considered completed when all the forwarded commands have ended. This component
monitors the execution of a CSP Subarray command, keeping track of the commands running on the CSP sub-systems.

When the execution of a command ends on a sub-system, the Component sub-system notifies this condition to the
CommandObserver invoking the notify method provided by this component.

This component implements also a set of attributes to report information about the status of each monitored sub-system
command, as for example the running and progress status.

At the end of the command, the Command Observer report the status of the command to the commandResult attribute.

2.2.2 Sub-system Command (Component Command)

The Component Command models a command acting on a sub-system Component instance. It implements
the logic to manage and control the command issued on a single component. The ComponentCommand
class, when instantiated for a specific command (On, Off , etc) contains all the information about the
request such as:

• the input parameters (if any)

• the Component to act on

• success, failure and timeout conditions

When the CSP Controller invokes the run method, each Component Command will run one (or more ac-
tions) on the associated Component object. When the Command ends, it reports to the Command Observer
the success or the failure.

2.3 Event Manager

Management of the events is delegated to a specific class (Event Manager Class). On initialization completion (when
the connection with the sub-system devices has been established) CSP.LMC devices (Controller and Subarray) select
which events are to be monitored on the sub-systems and delegate the subscription to the EventManager. The aim of
this class is to aggregate and report to TM the collective states and modes of the CSP (State, ObsState, HealthState,
ecc. . . ).

In other words, Event Manager works on the behalf of the CSP.LMC to:

• subscribes the events for the main state and modes subsystem’s attributes (registering callbacks to the Compo-
nent’s classes);

• retrieve the value or errors reported by the callback registered with the events

• carry out particular policies of aggregation on attributes, reducing the load of information traveling to the sub-
array;

This object does not subscribe directly to a sub-system TANGO devices, but relies on the corresponding Component
objects to perform such work. The events received from each sub-system are pushed back to the CSP Subarray via
callbacks registered at subscription time.

2.3. Event Manager 7



CSP.LMC Common Software Documentation, Release 0.17.2

8 Chapter 2. Architecture description



CHAPTER

THREE

PROJECT’S API

3.1 CSP.LMC Common Devices API

3.1.1 CspController

3.1.2 CspSubarray

3.2 CSP.LMC modules API

3.2.1 Manager subpackage

Controller Component Manager

Subarray Component Manager

Event Manager

Component Manager Configurator

3.2.2 CSP Sub-system Component

Component

Observing Component

CBF Controller Component

PSS Controller Component

PST Controller Component

CBF Subarray Component

PSS Subarray Component

9



CSP.LMC Common Software Documentation, Release 0.17.2

PST Beam Component

3.2.3 Command subpackage

Component Command

Base Component Commands

Observing Component Commands

This module includes the ComponentCommand specialized classes.

AssignResources

ReleaseResources

ReleaseAllResources

Configure

Scan

EndScan

Abort

ObsReset

Restart

Macro Component Commands

3.2.4 CSP State Models

Operational State Model

Health State Model

Observing State Model

Controller Operational State Model

Controller Health State Model

Subarray Operational State Model

Subarray Health State Model

Subarray Observing State Model

10 Chapter 3. Project’s API



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11


	CSP.LMC Common Package Description
	CSP.LMC Controller
	CSP.LMC Subarray
	Resources assignment
	Inherent Capabilities
	Scan configuration
	Control and Monitoring

	CSP.LMC Capabilities
	CSP.LMC Search Beam Capability
	CSP.LMC SearchBeamCapability API Documentation

	CSP.LMC Timing Beam Capability
	CSP.LMC TimingBeamCapability API Documentation

	CSP.LMC VLBI Beam Capability
	CSP.LMC VlbiBeamCapability API Documentation

	CSP.LMC CapabilityMonitor
	CSP.LMC CapabilityMonitor API Documentation



	Architecture description
	Interface to subsystem TANGO devices
	Csp sub-system Component
	Connector

	Commands execution
	Command Observer
	Sub-system Command (Component Command)

	Event Manager

	Project’s API
	CSP.LMC Common Devices API
	CspController
	CspSubarray

	CSP.LMC modules API
	Manager subpackage
	Controller Component Manager
	Subarray Component Manager
	Event Manager
	Component Manager Configurator

	CSP Sub-system Component
	Component
	Observing Component
	CBF Controller Component
	PSS Controller Component
	PST Controller Component
	CBF Subarray Component
	PSS Subarray Component
	PST Beam Component

	Command subpackage
	Component Command
	Base Component Commands
	Observing Component Commands
	AssignResources
	ReleaseResources
	ReleaseAllResources
	Configure
	Scan
	EndScan
	Abort
	ObsReset
	Restart

	Macro Component Commands

	CSP State Models
	Operational State Model
	Health State Model
	Observing State Model
	Controller Operational State Model
	Controller Health State Model
	Subarray Operational State Model
	Subarray Health State Model
	Subarray Observing State Model



	Indices and tables

