
ska-control-model
Release 0.3.1

Drew Devereux <drew.devereux@csiro.au>

Jun 08, 2023





CONTENTS:

1 Admin Mode 1

2 Operating State 5

3 Observing State 9

4 Observing Mode 13

5 Health State 15

6 Simulation Mode 17

7 Control Mode 19

8 Test Mode 21

9 Communication Status 23

10 Power State 25

11 Logging Level 27

12 Result Code 29

13 Task Status 31

14 Faults 33

15 Utils 35

16 Indices and tables 37

Python Module Index 39

Index 41

i



ii



CHAPTER

ONE

ADMIN MODE

class ska_control_model.AdminMode(value)
Python enumerated type for device admin mode.

An admin mode represents user intent as to how the component under control will be used.

MAINTENANCE = 2

The component under control can be used for maintainance purposes, such as testing, debugging or com-
missioning, as part of a “maintenance subarray”.. It may not be used for normal operations.

While in this mode, the control system actively monitors and controls its component, but may only support
a subset of normal functionality. Alarms and alerts will usually be suppressed.

MAINTENANCE mode has different meaning for different components, depending on the context and func-
tionality. Some entities may implement different behaviour when in MAINTENANCE mode. For each Tango
device, the difference in behaviour and functionality in MAINTENANCE mode shall be documented.

NOT_FITTED = 3

The component cannot be used for any purposes because it is not fitted; for example, faulty equipment has
been removed and not yet replaced, leaving nothing in situ to monitor.

While in this mode, the control system reports state DISABLED. All monitoring and control functionality is
disabled because there is no component to monitor.

OFFLINE = 1

The component under control shall not be monitored or controlled by the control system.

Either the component under control shall not be used at all, or it is under external control (such as the local
control of a field technician).

While in this mode, the control system reports its state as DISABLE. Since monitoring of the component is
not occurring, the control system does not issue alarms, alerts and other events.

ONLINE = 0

The component under control can be used for normal operations, such as observing. While in this mode,
the control system actively monitors and controls the component under control.

Control system elements that implement admin mode as a read-only attribute shall always report the admin
mode to be ONLINE.

RESERVED = 4

The component is fitted, but only for redundancy purposes. It is additional equipment that does not take
part in operations at this time, but is ready to take over when the operational equipment fails.

While in this mode, the control system reports state DISABLED. All monitoring and control functionality is
disabled.

1



ska-control-model, Release 0.3.1

class ska_control_model.AdminModeModel(logger, callback=None, state_machine_factory=<class
'ska_control_model.admin_mode._AdminModeMachine'>)

This class implements the state model for admin mode.

The model supports the five admin modes defined by the values of the AdminMode enum. It allows for:

• any transition between the modes NOT_FITTED, RESERVED and OFFLINE (e.g. an unfitted device being
fitted as a redundant or non-redundant device, a redundant device taking over when another device fails,
etc.)

• any transition between the modes OFFLINE, MAINTENANCE and ONLINE (e.g. an online device being
taken offline or put into maintenance mode to diagnose a fault, a faulty device moving between maintenance
and offline mode as it undergoes sporadic periods of diagnosis.)

The actions supported are:

• to_not_fitted

• to_reserved

• to_offline

• to_maintenance

• to_online

A diagram of the admin mode model, as designed, is shown below

Fig. 1: Diagram of the admin mode model

__init__(logger, callback=None, state_machine_factory=<class
'ska_control_model.admin_mode._AdminModeMachine'>)

Initialise the state model.

Parameters

• logger (Logger) – the logger to be used by this state model.

• callback (Optional[Callable[[AdminMode], None]]) – A callback to be called when
the state machine for admin_mode reports a change of state

2 Chapter 1. Admin Mode

https://docs.python.org/3.7/library/logging.html#logging.Logger
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Callable
https://docs.python.org/3.7/library/constants.html#None


ska-control-model, Release 0.3.1

• state_machine_factory (Callable) – a callable that returns a state machine for this
model to use

__weakref__

list of weak references to the object (if defined)

property admin_mode: AdminMode

Return the admin_mode.

Return type
AdminMode

Returns
admin_mode of this state model

is_action_allowed(action, raise_if_disallowed=False)
Return whether a given action is allowed in the current state.

Parameters

• action (str) – an action, as given in the transitions table

• raise_if_disallowed (bool) – whether to raise an exception if the action is disallowed,
or merely return False (optional, defaults to False)

Raises
StateModelError – if the action is unknown to the state machine

Return type
bool

Returns
whether the action is allowed in the current state

perform_action(action)
Perform an action on the state model.

Parameters
action (str) – an action, as given in the transitions table

Return type
None

3

https://docs.python.org/3.7/library/typing.html#typing.Callable
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


ska-control-model, Release 0.3.1

4 Chapter 1. Admin Mode



CHAPTER

TWO

OPERATING STATE

class ska_control_model.OpStateModel(logger, callback=None, state_machine_factory=None)
This class implements the state model for operational state (“opState”).

The model supports the following states, represented as values of the tango.DevState enum.

• INIT: the control system is initialising.

• DISABLE: the control system has been told not to monitor the system under control.

• UNKNOWN: the control system is monitoring (or at least trying to monitor) the system under control, but
is unable to determine its state.

• OFF: the control system is monitoring the system under control, which is powered off.

• STANDBY: the control system is monitoring the system under control, which is in low-power standby
mode.

• ON: the control system is monitoring the system under control, which is turned on.

• FAULT: the control system is monitoring the system under control, which has failed or is in an inconsistent
state.

The actions supported are:

• init_invoked: the control system has started initialising.

• init_completed: the control system has finished initialising.

• component_disconnected: the control system his disconnected from the system under control (for example
because admin mode was set to OFFLINE). Note, this action indicates a deliberate, control-system-initiated,
disconnect; a lost connection would be indicated by a “component_unknown” action.

• component_unknown: the control system is unable to determine the state of the system under control.

• component_off : the system under control has been switched off

• component_standby: the system under control has switched to low-power standby mode

• component_on: the system under control has been switched on.

• component_fault: the system under control has experienced a fault.

• component_no_fault: the system under control has stopped experiencing a fault.

A diagram of the operational state model, as implemented, is shown below.

The following hierarchical diagram is more explanatory; however note that the implementation does not use a
hierarchical state machine.

5

https://pytango.readthedocs.io/en/v9.3.3/client_api/other.html#tango.DevState


ska-control-model, Release 0.3.1

Fig. 1: Diagram of the operational state model

Fig. 2: Diagram of the operational state model

6 Chapter 2. Operating State



ska-control-model, Release 0.3.1

__init__(logger, callback=None, state_machine_factory=None)
Initialise the operational state model.

Parameters

• logger (Logger) – the logger to be used by this state model.

• callback (Optional[Callable]) – A callback to be called when the state machine for
op_state reports a change of state

• state_machine_factory (Optional[Callable]) – a callable that returns a state ma-
chine for this model to use

__weakref__

list of weak references to the object (if defined)

is_action_allowed(action, raise_if_disallowed=False)
Return whether a given action is allowed in the current state.

Parameters

• action (str) – an action, as given in the transitions table

• raise_if_disallowed (bool) – whether to raise an exception if the action is disallowed,
or merely return False (optional, defaults to False)

Raises
StateModelError – if the action is unknown to the state machine

Return type
bool

Returns
whether the action is allowed in the current state

property op_state: tango.DevState

Return the op state.

Return type
DevState

Returns
the op state of this state model

perform_action(action)
Perform an action on the state model.

Parameters
action (str) – an action, as given in the transitions table

Return type
None

7

https://docs.python.org/3.7/library/logging.html#logging.Logger
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Callable
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Callable
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://pytango.readthedocs.io/en/v9.3.3/client_api/other.html#tango.DevState
https://pytango.readthedocs.io/en/v9.3.3/client_api/other.html#tango.DevState
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


ska-control-model, Release 0.3.1

8 Chapter 2. Operating State



CHAPTER

THREE

OBSERVING STATE

class ska_control_model.ObsState(value)
Python enumerated type for observing state.

ABORTED = 7

The subarray is in an aborted state.

ABORTING = 6

The subarray has been interrupted and is aborting what it was doing.

CONFIGURING = 3

The subarray is being configured for an observation.

This is a transient state; the subarray will automatically transition to READY when configuring completes
normally.

EMPTY = 0

The sub-array has no resources allocated and is unconfigured.

FAULT = 9

The subarray has detected an error in its observing state.

IDLE = 2

The subarray has resources allocated but is unconfigured.

READY = 4

The subarray is fully prepared to scan, but is not scanning.

It may be tracked, but it is not moving in the observed coordinate system, nor is it taking data.

RESETTING = 8

The subarray device is resetting to a base (EMPTY or IDLE) state.

RESOURCING = 1

Resources are being allocated to, or deallocated from, the subarray.

In normal science operations these will be the resources required for the upcoming SBI execution.

This may be a complete de/allocation, or it may be incremental. In both cases it is a transient state; when the
resourcing operation completes, the subarray will automatically transition to EMPTY or IDLE, according
to whether the subarray ended up having resources or not.

For some subsystems this may be a very brief state if resourcing is a quick activity.

9



ska-control-model, Release 0.3.1

RESTARTING = 10

The subarray device is restarting.

After restarting, the subarray will return to EMPTY state, with no allocated resources and no configuration
defined.

SCANNING = 5

The subarray is scanning.

It is taking data and, if needed, all components are synchronously moving in the observed coordinate system.

Any changes to the sub-systems are happening automatically (this allows for a scan to cover the case where
the phase centre is moved in a pre-defined pattern).

class ska_control_model.ObsStateModel(logger, callback=None, state_machine_factory=<class
'ska_control_model.obs_state._ObsStateMachine'>)

Implements the observation state model for subarray.

The model supports all of the states of the ObsState enum:

• EMPTY: the subarray is unresourced

• RESOURCING: the subarray is performing a resourcing operation

• IDLE: the subarray is resourced but unconfigured

• CONFIGURING: the subarray is performing a configuring operation

• READY: the subarray is resourced and configured

• SCANNING: the subarray is scanning

• ABORTING: the subarray is aborting

• ABORTED: the subarray has aborted

• RESETTING: the subarray is resetting from an ABORTED or FAULT state back to IDLE

• RESTARTING: the subarray is restarting from an ABORTED or FAULT state back to EMPTY

• FAULT: the subarray has encountered a observation fault.

A diagram of the subarray observation state model is shown below. This model is non-deterministic as dia-
grammed, but the underlying state machines has extra states and transitions that render it deterministic. This
class simply maps those extra classes onto valid ObsState values.

__init__(logger, callback=None, state_machine_factory=<class
'ska_control_model.obs_state._ObsStateMachine'>)

Initialise the model.

Parameters

• logger (Logger) – the logger to be used by this state model.

• callback (Optional[Callable]) – A callback to be called when a transition causes a
change to device obs_state

• state_machine_factory (Callable) – a callable that returns a state machine for this
model to use

__weakref__

list of weak references to the object (if defined)

10 Chapter 3. Observing State

https://docs.python.org/3.7/library/logging.html#logging.Logger
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Callable
https://docs.python.org/3.7/library/typing.html#typing.Callable


ska-control-model, Release 0.3.1

Fig. 1: Diagram of the subarray observation state model

is_action_allowed(action, raise_if_disallowed=False)
Return whether a given action is allowed in the current state.

Parameters

• action (str) – an action, as given in the transitions table

• raise_if_disallowed (bool) – whether to raise an exception if the action is disallowed,
or merely return False (optional, defaults to False)

Raises
StateModelError – if the action is unknown to the state machine

Return type
bool

Returns
whether the action is allowed in the current state

property obs_state: Optional[ObsState]

Return the obs_state.

Return type
Optional[ObsState]

Returns
obs_state of this state model

perform_action(action)
Perform an action on the state model.

11

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Optional


ska-control-model, Release 0.3.1

Parameters
action (str) – an action, as given in the transitions table

Return type
None

12 Chapter 3. Observing State

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


CHAPTER

FOUR

OBSERVING MODE

class ska_control_model.ObsMode(value)
Python enumerated type for observing mode.

CALIBRATION = 7

Calibration observation is active.

DYNAMIC_SPECTRUM = 4

Dynamic spectrum observation is active.

IDLE = 0

The observing mode shall be IDLE when the observing state is IDLE (see ObsState). Otherwise, it will
correctly report the appropriate value.

More than one observing mode can be active in the same subarray at the same time.

IMAGING = 1

Imaging observation is active.

PULSAR_SEARCH = 2

Pulsar search observation is active.

PULSAR_TIMING = 3

Pulsar timing observation is active.

TRANSIENT_SEARCH = 5

Transient search observation is active.

VLBI = 6

Very long baseline interferometry observation is active.

13



ska-control-model, Release 0.3.1

14 Chapter 4. Observing Mode



CHAPTER

FIVE

HEALTH STATE

class ska_control_model.HealthState(value)
Python enumerated type for health state.

DEGRADED = 1

The device reports this state when only part of its functionality is available. This value is optional and shall
be implemented only where it is useful.

For example, a subarray may report its health state as DEGRADED if one of the dishes that belongs to a
subarray is unresponsive (or may report health state as FAILED).

Difference between DEGRADED and FAILED health state shall be clearly identified (quantified) and docu-
mented. For example, the difference between a DEGRADED and FAILED subarray might be defined as:

• the number or percent of the dishes available;

• the number or percent of the baselines available;

• sensitivity

or some other criterion. More than one criterion may be defined for a device.

FAILED = 2

The device reports this state when unable to perform core functionality and produce valid output.

OK = 0

A device reports this state when there are no failures that are assessed as affecting the ability of the device
to perform its function.

UNKNOWN = 3

The device reports this state when unable to determine its health.

This is also an initial state, indicating that health state has not yet been determined.

15



ska-control-model, Release 0.3.1

16 Chapter 5. Health State



CHAPTER

SIX

SIMULATION MODE

class ska_control_model.SimulationMode(value)
Python enumerated type for simulation mode.

FALSE = 0

The control system is connected to a real entity.

TRUE = 1

The control system is connected to a simulator.

It may be connected to an entirely separate simulator, or the real entity may be itself in a simulation mode.

17



ska-control-model, Release 0.3.1

18 Chapter 6. Simulation Mode



CHAPTER

SEVEN

CONTROL MODE

class ska_control_model.ControlMode(value)
Python enumerated type for control mode.

LOCAL = 1

Monitoring and control operations are accepted only from a “local” client.

Commands and queries received from TM or any other “remote” clients are ignored.

This mode is typically activated by a switch, or a connection on the local control interface. The intention
is to support early integration of dishes and stations. The equipment has to be put back in REMOTE before
clients can take control again.

Note: LOCAL control mode is not a safety feature, but rather a usability feature. Safety must be imple-
mented separately from the control paths.

REMOTE = 0

Monitoring and control operations are accepted from all clients.

19



ska-control-model, Release 0.3.1

20 Chapter 7. Control Mode



CHAPTER

EIGHT

TEST MODE

class ska_control_model.TestMode(value)
Python enumerated type for test mode.

NONE = 0

Normal mode of operation. No test mode active.

TEST = 1

Test mode active.

The element’s behaviour and/or interface differs from the normal operating mode.

To be implemented only by devices that implement one or more test modes. The element documentation
shall provide detailed description.

21



ska-control-model, Release 0.3.1

22 Chapter 8. Test Mode



CHAPTER

NINE

COMMUNICATION STATUS

class ska_control_model.CommunicationStatus(value)
The status of communication with the system under controk.

DISABLED = 0

Communication is disabled.

The control system is not trying to establish/maintain a channel of communication with the system under
control. For example:

• if communication with the system under control is connection-oriented, then there is no connection,
and the control system is not trying to establish a connection.

• if communication is by event subscription, then the control system is unsubscribed from events.

• if communication is by polling, then the control system is not performing that polling.

ESTABLISHED = 2

The control system has established a channel of communication with the system under control. For example:

• if communication with the system under control is connection-oriented, then the control system has
connected to the system under control.

• if communication is by polling, then the control system is polling the system under control, and the
system under control is responsive.

NOT_ESTABLISHED = 1

Communication is sought but not established.

The control system is trying to establish/maintain a channel of communication with the system under con-
trol, but that channel is not currently established. For example:

• if communication with the system under control is connection-oriented, then the control system has
not yet succeeded in establishing the connection, or the connection has been broken.

23



ska-control-model, Release 0.3.1

24 Chapter 9. Communication Status



CHAPTER

TEN

POWER STATE

class ska_control_model.PowerState(value)
Enumerated type for power state.

Used by components that rely upon a power supply, such as hardware.

NO_SUPPLY = 1

The component is unsupplied with power and cannot be commanded on.

For example, the power mode of a TPM will be NO_SUPPLY if the subrack that powers the TPM is turned
off: not only is the TPM off, but it cannot even be turned on (until the subrack has been turned on).

OFF = 2

The component is turned off but can be commanded on.

ON = 4

The component is powered on and running in fully-operational mode.

STANDBY = 3

The component is powered on and running in low-power standby mode.

UNKNOWN = 0

The power mode is not known.

25



ska-control-model, Release 0.3.1

26 Chapter 10. Power State



CHAPTER

ELEVEN

LOGGING LEVEL

class ska_control_model.LoggingLevel(value)
Python enumerated type for logging level.

DEBUG = 5

Logs of information relevant only for debugging

ERROR = 2

Logs of errors.

FATAL = 1

Logs of critical events that result in component shutdown or failure.

INFO = 4

Logs of information relevant to users.

OFF = 0

Logging is turned off.

WARNING = 3

Logs of warnings.

27



ska-control-model, Release 0.3.1

28 Chapter 11. Logging Level



CHAPTER

TWELVE

RESULT CODE

class ska_control_model.ResultCode(value)
Python enumerated type for command result codes.

ABORTED = 7

The command in progress has been aborted.

FAILED = 3

The command could not be executed.

NOT_ALLOWED = 6

The command is not allowed to be executed.

OK = 0

The command was executed successfully.

QUEUED = 2

The command has been accepted and will be executed at a future time.

REJECTED = 5

The command execution has been rejected.

STARTED = 1

The command has been accepted and will start immediately.

UNKNOWN = 4

The status of the command is not known.

29



ska-control-model, Release 0.3.1

30 Chapter 12. Result Code



CHAPTER

THIRTEEN

TASK STATUS

class ska_control_model.TaskStatus(value)
The status of a task.

A task is any operation that is being performed asynchronously.

ABORTED = 3

The task has been aborted.

COMPLETED = 5

The task was completed.

Note that this does not necessarily imply that the task was executed successfully. Whether the task suc-
ceeded or failed is a matter for the ResultCode. The COMPLETED value indicates only that execution of
the task ran to completion.

FAILED = 7

The task failed to complete.

Note that this should not be used for a task that executes to completion, but does not achieve its goal. This
kind of domain-specific notion of “succeeded” versus “failed” should be passed in a ResultCode. Here,
FAILED means that the task executor has detected a failure of the task to run to completion. For example,
execution of the task might have resulted in the raising of an uncaught exception.

IN_PROGRESS = 2

The task is being executed.

NOT_FOUND = 4

The task is not found.

QUEUED = 1

The task has been accepted and will be executed at a future time.

REJECTED = 6

The task was rejected.

STAGING = 0

The request to execute the task has not yet been acted upon.

31



ska-control-model, Release 0.3.1

32 Chapter 13. Task Status



CHAPTER

FOURTEEN

FAULTS

This module defines faults that are part of the SKA control model.

exception ska_control_model.faults.StateModelError

Error in state machine model related to transitions or state.

__weakref__

list of weak references to the object (if defined)

33



ska-control-model, Release 0.3.1

34 Chapter 14. Faults



CHAPTER

FIFTEEN

UTILS

This module defines utils used in this package.

ska_control_model.utils.for_testing_only(func, _testing_check=<function <lambda>>)
Return a function that checks that it is being called in testing.

This is a decorator that only calls the decorated function after first checking that it is being called in testing. If
called outside of testing, a warning is raised.

@for_testing_only
def _straight_to_state(self, state):

...

Parameters
func (Callable) – the function to be decorated

Return type
Callable

Returns
the decorated function

35

https://docs.python.org/3.7/library/typing.html#typing.Callable
https://docs.python.org/3.7/library/typing.html#typing.Callable


ska-control-model, Release 0.3.1

36 Chapter 15. Utils



CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

37



ska-control-model, Release 0.3.1

38 Chapter 16. Indices and tables



PYTHON MODULE INDEX

s
ska_control_model.faults, 33
ska_control_model.utils, 35

39



ska-control-model, Release 0.3.1

40 Python Module Index



INDEX

Symbols
__init__() (ska_control_model.AdminModeModel

method), 2
__init__() (ska_control_model.ObsStateModel

method), 10
__init__() (ska_control_model.OpStateModel

method), 5
__weakref__ (ska_control_model.AdminModeModel at-

tribute), 3
__weakref__ (ska_control_model.ObsStateModel

attribute), 10
__weakref__ (ska_control_model.OpStateModel at-

tribute), 7
__weakref__ (ska_control_model.faults.StateModelError

attribute), 33

A
ABORTED (ska_control_model.ObsState attribute), 9
ABORTED (ska_control_model.ResultCode attribute), 29
ABORTED (ska_control_model.TaskStatus attribute), 31
ABORTING (ska_control_model.ObsState attribute), 9
admin_mode (ska_control_model.AdminModeModel

property), 3
AdminMode (class in ska_control_model), 1
AdminModeModel (class in ska_control_model), 1

C
CALIBRATION (ska_control_model.ObsMode attribute),

13
CommunicationStatus (class in ska_control_model),

23
COMPLETED (ska_control_model.TaskStatus attribute), 31
CONFIGURING (ska_control_model.ObsState attribute), 9
ControlMode (class in ska_control_model), 19

D
DEBUG (ska_control_model.LoggingLevel attribute), 27
DEGRADED (ska_control_model.HealthState attribute), 15
DISABLED (ska_control_model.CommunicationStatus at-

tribute), 23
DYNAMIC_SPECTRUM (ska_control_model.ObsMode at-

tribute), 13

E
EMPTY (ska_control_model.ObsState attribute), 9
ERROR (ska_control_model.LoggingLevel attribute), 27
ESTABLISHED (ska_control_model.CommunicationStatus

attribute), 23

F
FAILED (ska_control_model.HealthState attribute), 15
FAILED (ska_control_model.ResultCode attribute), 29
FAILED (ska_control_model.TaskStatus attribute), 31
FALSE (ska_control_model.SimulationMode attribute),

17
FATAL (ska_control_model.LoggingLevel attribute), 27
FAULT (ska_control_model.ObsState attribute), 9
for_testing_only() (in module

ska_control_model.utils), 35

H
HealthState (class in ska_control_model), 15

I
IDLE (ska_control_model.ObsMode attribute), 13
IDLE (ska_control_model.ObsState attribute), 9
IMAGING (ska_control_model.ObsMode attribute), 13
IN_PROGRESS (ska_control_model.TaskStatus attribute),

31
INFO (ska_control_model.LoggingLevel attribute), 27
is_action_allowed()

(ska_control_model.AdminModeModel
method), 3

is_action_allowed()
(ska_control_model.ObsStateModel method),
10

is_action_allowed()
(ska_control_model.OpStateModel method), 7

L
LOCAL (ska_control_model.ControlMode attribute), 19
LoggingLevel (class in ska_control_model), 27

41



ska-control-model, Release 0.3.1

M
MAINTENANCE (ska_control_model.AdminMode at-

tribute), 1
module

ska_control_model.faults, 33
ska_control_model.utils, 35

N
NO_SUPPLY (ska_control_model.PowerState attribute), 25
NONE (ska_control_model.TestMode attribute), 21
NOT_ALLOWED (ska_control_model.ResultCode attribute),

29
NOT_ESTABLISHED (ska_control_model.CommunicationStatus

attribute), 23
NOT_FITTED (ska_control_model.AdminMode attribute),

1
NOT_FOUND (ska_control_model.TaskStatus attribute), 31

O
obs_state (ska_control_model.ObsStateModel prop-

erty), 11
ObsMode (class in ska_control_model), 13
ObsState (class in ska_control_model), 9
ObsStateModel (class in ska_control_model), 10
OFF (ska_control_model.LoggingLevel attribute), 27
OFF (ska_control_model.PowerState attribute), 25
OFFLINE (ska_control_model.AdminMode attribute), 1
OK (ska_control_model.HealthState attribute), 15
OK (ska_control_model.ResultCode attribute), 29
ON (ska_control_model.PowerState attribute), 25
ONLINE (ska_control_model.AdminMode attribute), 1
op_state (ska_control_model.OpStateModel property),

7
OpStateModel (class in ska_control_model), 5

P
perform_action() (ska_control_model.AdminModeModel

method), 3
perform_action() (ska_control_model.ObsStateModel

method), 11
perform_action() (ska_control_model.OpStateModel

method), 7
PowerState (class in ska_control_model), 25
PULSAR_SEARCH (ska_control_model.ObsMode at-

tribute), 13
PULSAR_TIMING (ska_control_model.ObsMode at-

tribute), 13

Q
QUEUED (ska_control_model.ResultCode attribute), 29
QUEUED (ska_control_model.TaskStatus attribute), 31

R
READY (ska_control_model.ObsState attribute), 9

REJECTED (ska_control_model.ResultCode attribute), 29
REJECTED (ska_control_model.TaskStatus attribute), 31
REMOTE (ska_control_model.ControlMode attribute), 19
RESERVED (ska_control_model.AdminMode attribute), 1
RESETTING (ska_control_model.ObsState attribute), 9
RESOURCING (ska_control_model.ObsState attribute), 9
RESTARTING (ska_control_model.ObsState attribute), 9
ResultCode (class in ska_control_model), 29

S
SCANNING (ska_control_model.ObsState attribute), 10
SimulationMode (class in ska_control_model), 17
ska_control_model.faults

module, 33
ska_control_model.utils

module, 35
STAGING (ska_control_model.TaskStatus attribute), 31
STANDBY (ska_control_model.PowerState attribute), 25
STARTED (ska_control_model.ResultCode attribute), 29
StateModelError, 33

T
TaskStatus (class in ska_control_model), 31
TEST (ska_control_model.TestMode attribute), 21
TestMode (class in ska_control_model), 21
TRANSIENT_SEARCH (ska_control_model.ObsMode at-

tribute), 13
TRUE (ska_control_model.SimulationMode attribute), 17

U
UNKNOWN (ska_control_model.HealthState attribute), 15
UNKNOWN (ska_control_model.PowerState attribute), 25
UNKNOWN (ska_control_model.ResultCode attribute), 29

V
VLBI (ska_control_model.ObsMode attribute), 13

W
WARNING (ska_control_model.LoggingLevel attribute), 27

42 Index


	Admin Mode
	Operating State
	Observing State
	Observing Mode
	Health State
	Simulation Mode
	Control Mode
	Test Mode
	Communication Status
	Power State
	Logging Level
	Result Code
	Task Status
	Faults
	Utils
	Indices and tables
	Python Module Index
	Index

