

Welcome to ska-control-model’s documentation!

Contents:

	Admin Mode

	Operating State

	Observing State

	Observing Mode

	Health State

	Simulation Mode

	Control Mode

	Test Mode

	Communication Status

	Power State

	Logging Level

	Result Code

	Task Status

	Faults

	Utils

Indices and tables

	Index

	Module Index

	Search Page

Admin Mode

	
class ska_control_model.AdminMode(value)

	Python enumerated type for device admin mode.

An admin mode represents user intent as to how the component under
control will be used.

	
MAINTENANCE = 2

	The component under control can be used for maintainance purposes,
such as testing, debugging or commissioning, as part of a
“maintenance subarray”.. It may not be used for normal operations.

While in this mode, the control system actively monitors and
controls its component, but may only support a subset of normal
functionality. Alarms and alerts will usually be suppressed.

MAINTENANCE mode has different meaning for different components,
depending on the context and functionality. Some entities may
implement different behaviour when in MAINTENANCE mode. For each
Tango device, the difference in behaviour and functionality in
MAINTENANCE mode shall be documented.

	
NOT_FITTED = 3

	The component cannot be used for any purposes because it is not
fitted; for example, faulty equipment has been removed and not
yet replaced, leaving nothing in situ to monitor.

While in this mode, the control system reports state DISABLED.
All monitoring and control functionality is disabled because there
is no component to monitor.

	
OFFLINE = 1

	The component under control shall not be monitored or controlled by
the control system.

Either the component under control shall not be used at all, or it
is under external control (such as the local control of a field
technician).

While in this mode, the control system reports its state as
DISABLE. Since monitoring of the component is not occurring,
the control system does not issue alarms, alerts and other events.

	
ONLINE = 0

	The component under control can be used for normal operations, such
as observing. While in this mode, the control system actively
monitors and controls the component under control.

Control system elements that implement admin mode as a read-only
attribute shall always report the admin mode to be ONLINE.

	
RESERVED = 4

	The component is fitted, but only for redundancy purposes. It is
additional equipment that does not take part in operations at this
time, but is ready to take over when the operational
equipment fails.

While in this mode, the control system reports state DISABLED.
All monitoring and control functionality is disabled.

	
class ska_control_model.AdminModeModel(logger, callback=None, state_machine_factory=<class 'ska_control_model.admin_mode._AdminModeMachine'>)

	This class implements the state model for admin mode.

The model supports the five admin modes defined by the values of the
AdminMode enum. It allows for:

	any transition between the modes NOT_FITTED, RESERVED and OFFLINE
(e.g. an unfitted device being fitted as a redundant or
non-redundant device, a redundant device taking over when another
device fails, etc.)

	any transition between the modes OFFLINE, MAINTENANCE and ONLINE
(e.g. an online device being taken offline or put into maintenance
mode to diagnose a fault, a faulty device moving between
maintenance and offline mode as it undergoes sporadic periods of
diagnosis.)

The actions supported are:

	to_not_fitted

	to_reserved

	to_offline

	to_maintenance

	to_online

A diagram of the admin mode model, as designed, is shown below

[image: ONLINE --> ONLINE ONLINE <-right-> MAINTENANCE ONLINE <-down-> OFFLINE MAINTENANCE -> MAINTENANCE MAINTENANCE <-down-> OFFLINE OFFLINE -> OFFLINE OFFLINE <-down->NOT_FITTED OFFLINE <-down->RESERVED NOT_FITTED -> NOT_FITTED NOT_FITTED <-right->RESERVED RESERVED -> RESERVED]

Diagram of the admin mode model

	
__init__(logger, callback=None, state_machine_factory=<class 'ska_control_model.admin_mode._AdminModeMachine'>)

	Initialise the state model.

	Parameters

	
	logger (Logger [https://docs.python.org/3.7/library/logging.html#logging.Logger]) – the logger to be used by this state model.

	callback (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable][[AdminMode], None [https://docs.python.org/3.7/library/constants.html#None]]]) – A callback to be called when the state machine
for admin_mode reports a change of state

	state_machine_factory (Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]) – a callable that returns a
state machine for this model to use

	
__weakref__

	list of weak references to the object (if defined)

	
property admin_mode: AdminMode

	Return the admin_mode.

	Return type

	AdminMode

	Returns

	admin_mode of this state model

	
is_action_allowed(action, raise_if_disallowed=False)

	Return whether a given action is allowed in the current state.

	Parameters

	
	action (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – an action, as given in the transitions table

	raise_if_disallowed (bool [https://docs.python.org/3.7/library/functions.html#bool]) – whether to raise an exception if the
action is disallowed, or merely return False (optional,
defaults to False)

	Raises

	StateModelError – if the action is unknown to the state
machine

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	Returns

	whether the action is allowed in the current state

	
perform_action(action)

	Perform an action on the state model.

	Parameters

	action (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – an action, as given in the transitions table

	Return type

	None [https://docs.python.org/3.7/library/constants.html#None]

Operating State

	
class ska_control_model.OpStateModel(logger, callback=None, state_machine_factory=None)

	This class implements the state model for operational state (“opState”).

The model supports the following states, represented as values of
the tango.DevState [https://pytango.readthedocs.io/en/v9.3.3/client_api/other.html#tango.DevState] enum.

	INIT: the control system is initialising.

	DISABLE: the control system has been told not to monitor the
system under control.

	UNKNOWN: the control system is monitoring (or at least trying
to monitor) the system under control, but is unable to determine
its state.

	OFF: the control system is monitoring the system under
control, which is powered off.

	STANDBY: the control system is monitoring the system under
control, which is in low-power standby mode.

	ON: the control system is monitoring the system under control,
which is turned on.

	FAULT: the control system is monitoring the system under
control, which has failed or is in an inconsistent state.

The actions supported are:

	init_invoked: the control system has started initialising.

	init_completed: the control system has finished initialising.

	component_disconnected: the control system his disconnected
from the system under control (for example because admin mode was
set to OFFLINE). Note, this action indicates a deliberate,
control-system-initiated, disconnect; a lost connection would be
indicated by a “component_unknown” action.

	component_unknown: the control system is unable to determine
the state of the system under control.

	component_off: the system under control has been switched off

	component_standby: the system under control has switched to
low-power standby mode

	component_on: the system under control has been switched on.

	component_fault: the system under control has experienced a
fault.

	component_no_fault: the system under control has stopped
experiencing a fault.

A diagram of the operational state model, as implemented, is shown
below.

[image: INIT: The Tango device is initialising. UNKNOWN: The Tango device cannot determine\nthe state of its telescope component. DISABLE: The Tango device is not monitoring\nits telescope component. OFF: The telescope component is turned off STANDBY: The telescope component is standing by ON: The telescope component is turned on FAULT: The telescope component has faulted INIT --down--> DISABLE INIT --down--> UNKNOWN INIT --down--> OFF INIT --down--> STANDBY INIT --down--> ON INIT --down--> FAULT DISABLE -> UNKNOWN DISABLE -> OFF DISABLE -> STANDBY DISABLE -> ON DISABLE -> FAULT UNKNOWN -> DISABLE UNKNOWN -> OFF UNKNOWN -> STANDBY UNKNOWN -> ON UNKNOWN -> FAULT OFF -> DISABLE OFF -> UNKNOWN OFF -> STANDBY OFF -> ON OFF -> FAULT STANDBY -> DISABLE STANDBY -> UNKNOWN STANDBY -> OFF STANDBY -> ON STANDBY -> FAULT ON -> DISABLE ON -> UNKNOWN ON -> OFF ON -> STANDBY ON -> FAULT FAULT -> DISABLE FAULT -> UNKNOWN FAULT -> OFF FAULT -> STANDBY FAULT -> ON]

Diagram of the operational state model

The following hierarchical diagram is more explanatory; however note
that the implementation does not use a hierarchical state machine.

[image: INIT: The Tango device is initialising. UNKNOWN: The Tango device cannot determine\nthe state of its telescope component. DISABLE: The Tango device is not monitoring\nits telescope component. INIT -right-> DISABLE INIT -right-> MONITORING INIT -right-> UNKNOWN DISABLE -down-> UNKNOWN DISABLE -down-> MONITORING UNKNOWN -up-> DISABLE UNKNOWN -down-> MONITORING MONITORING -up-> DISABLE MONITORING -up-> UNKNOWN state "[monitoring]" as MONITORING { MONITORING: The Tango device is monitoring the telescope component. OFF: The telescope component is turned off STANDBY: The telescope component is standing by ON: The telescope component is turned on FAULT: The telescope component has faulted OFF -right-> STANDBY OFF -right-> FAULT OFF -right-> ON STANDBY -left-> OFF STANDBY -down-> ON STANDBY -down-> FAULT ON -left-> OFF ON -up-> STANDBY ON -down-> FAULT FAULT -left-> OFF FAULT -up-> STANDBY FAULT -up-> ON }]

Diagram of the operational state model

	
__init__(logger, callback=None, state_machine_factory=None)

	Initialise the operational state model.

	Parameters

	
	logger (Logger [https://docs.python.org/3.7/library/logging.html#logging.Logger]) – the logger to be used by this state model.

	callback (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]]) – A callback to be called when the state machine
for op_state reports a change of state

	state_machine_factory (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]]) – a callable that returns a
state machine for this model to use

	
__weakref__

	list of weak references to the object (if defined)

	
is_action_allowed(action, raise_if_disallowed=False)

	Return whether a given action is allowed in the current state.

	Parameters

	
	action (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – an action, as given in the transitions table

	raise_if_disallowed (bool [https://docs.python.org/3.7/library/functions.html#bool]) – whether to raise an exception if the
action is disallowed, or merely return False (optional,
defaults to False)

	Raises

	StateModelError – if the action is unknown to the state
machine

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	Returns

	whether the action is allowed in the current state

	
property op_state: tango.DevState [https://pytango.readthedocs.io/en/v9.3.3/client_api/other.html#tango.DevState]

	Return the op state.

	Return type

	DevState [https://pytango.readthedocs.io/en/v9.3.3/client_api/other.html#tango.DevState]

	Returns

	the op state of this state model

	
perform_action(action)

	Perform an action on the state model.

	Parameters

	action (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – an action, as given in the transitions table

	Return type

	None [https://docs.python.org/3.7/library/constants.html#None]

Observing State

	
class ska_control_model.ObsState(value)

	Python enumerated type for observing state.

	
ABORTED = 7

	The subarray is in an aborted state.

	
ABORTING = 6

	The subarray has been interrupted and is aborting what it was doing.

	
CONFIGURING = 3

	The subarray is being configured for an observation.

This is a transient state; the subarray will automatically
transition to READY when configuring completes normally.

	
EMPTY = 0

	The sub-array has no resources allocated and is unconfigured.

	
FAULT = 9

	The subarray has detected an error in its observing state.

	
IDLE = 2

	The subarray has resources allocated but is unconfigured.

	
READY = 4

	The subarray is fully prepared to scan, but is not scanning.

It may be tracked, but it is not moving in the observed coordinate
system, nor is it taking data.

	
RESETTING = 8

	The subarray device is resetting to a base (EMPTY or IDLE) state.

	
RESOURCING = 1

	Resources are being allocated to, or deallocated from, the subarray.

In normal science operations these will be the resources required
for the upcoming SBI execution.

This may be a complete de/allocation, or it may be incremental. In
both cases it is a transient state; when the resourcing operation
completes, the subarray will automatically transition to EMPTY or
IDLE, according to whether the subarray ended up having resources or
not.

For some subsystems this may be a very brief state if resourcing is
a quick activity.

	
RESTARTING = 10

	The subarray device is restarting.

After restarting, the subarray will return to EMPTY state, with no
allocated resources and no configuration defined.

	
SCANNING = 5

	The subarray is scanning.

It is taking data and, if needed, all components are synchronously
moving in the observed coordinate system.

Any changes to the sub-systems are happening automatically (this
allows for a scan to cover the case where the phase centre is moved
in a pre-defined pattern).

	
class ska_control_model.ObsStateModel(logger, callback=None, state_machine_factory=<class 'ska_control_model.obs_state._ObsStateMachine'>)

	Implements the observation state model for subarray.

The model supports all of the states of the
ObsState enum:

	EMPTY: the subarray is unresourced

	RESOURCING: the subarray is performing a resourcing operation

	IDLE: the subarray is resourced but unconfigured

	CONFIGURING: the subarray is performing a configuring
operation

	READY: the subarray is resourced and configured

	SCANNING: the subarray is scanning

	ABORTING: the subarray is aborting

	ABORTED: the subarray has aborted

	RESETTING: the subarray is resetting from an ABORTED or FAULT
state back to IDLE

	RESTARTING: the subarray is restarting from an ABORTED or
FAULT state back to EMPTY

	FAULT: the subarray has encountered a observation fault.

A diagram of the subarray observation state model is shown below.
This model is non-deterministic as diagrammed, but the underlying
state machines has extra states and transitions that render it
deterministic. This class simply maps those extra classes onto
valid ObsState values.

[image: EMPTY: The subarray has no resources RESOURCING: The subarray is performing a resourcing operation IDLE: The subarray is unconfigured CONFIGURING: The subarray is performing a configuring operation READY: The subarray is configured SCANNING: The subarray is scanning ABORTING: The subarray is aborting ABORTED: The subarray has aborted RESETTING: The subarray is resetting to IDLE\nfrom FAULT or ABORTED state RESTARTING: The subarray is restarting to EMPTY\nfrom FAULT or ABORTED state FAULT: The subarray has faulted EMPTY -down-> RESOURCING: assign_invoked RESOURCING -up-> EMPTY: assign_completed RESOURCING -up-> EMPTY: release_completed RESOURCING -down-> IDLE: assign_completed RESOURCING -down-> IDLE: release_completed IDLE -up-> RESOURCING: assign_invoked IDLE -up-> RESOURCING: release_invoked IDLE -down-> CONFIGURING: configure_invoked IDLE -left-> ABORTING: abort_invoked CONFIGURING -up-> IDLE: configure_completed CONFIGURING -left-> ABORTING: abort_invoked CONFIGURING -down-> READY: configure_completed CONFIGURING -left-> ABORTING: abort_invoked READY -up-> CONFIGURING: configure_invoked READY -up-> IDLE: component_unconfigured READY -down-> SCANNING: component_scanning READY -left-> ABORTING: abort_invoked SCANNING -up-> READY: component_not_scanning SCANNING -left-> ABORTING: abort_invoked ABORTING -up-> ABORTED: abort_completed ABORTED -up-> RESETTING: obsreset_invoked ABORTED -up-> RESTARTING: restart_invoked RESETTING -down-> ABORTING: abort_invoked RESETTING -right-> IDLE: obsreset_completed RESTARTING -right-> EMPTY: restart_completed [*] -up-> FAULT: component_obsfault\n(from any state) FAULT -up-> RESETTING: obsreset_invoked FAULT -up-> RESTARTING: restart_invoked]

Diagram of the subarray observation state model

	
__init__(logger, callback=None, state_machine_factory=<class 'ska_control_model.obs_state._ObsStateMachine'>)

	Initialise the model.

	Parameters

	
	logger (Logger [https://docs.python.org/3.7/library/logging.html#logging.Logger]) – the logger to be used by this state model.

	callback (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]]) – A callback to be called when a transition
causes a change to device obs_state

	state_machine_factory (Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]) – a callable that returns a
state machine for this model to use

	
__weakref__

	list of weak references to the object (if defined)

	
is_action_allowed(action, raise_if_disallowed=False)

	Return whether a given action is allowed in the current state.

	Parameters

	
	action (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – an action, as given in the transitions table

	raise_if_disallowed (bool [https://docs.python.org/3.7/library/functions.html#bool]) – whether to raise an exception if the
action is disallowed, or merely return False (optional,
defaults to False)

	Raises

	StateModelError – if the action is unknown to the state
machine

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	Returns

	whether the action is allowed in the current state

	
property obs_state: Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][ObsState]

	Return the obs_state.

	Return type

	Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][ObsState]

	Returns

	obs_state of this state model

	
perform_action(action)

	Perform an action on the state model.

	Parameters

	action (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – an action, as given in the transitions table

	Return type

	None [https://docs.python.org/3.7/library/constants.html#None]

Observing Mode

	
class ska_control_model.ObsMode(value)

	Python enumerated type for observing mode.

	
CALIBRATION = 7

	Calibration observation is active.

	
DYNAMIC_SPECTRUM = 4

	Dynamic spectrum observation is active.

	
IDLE = 0

	The observing mode shall be IDLE when the observing state is
IDLE (see ObsState).
Otherwise, it will correctly report the appropriate value.

More than one observing mode can be active in the same subarray at
the same time.

	
IMAGING = 1

	Imaging observation is active.

	
PULSAR_SEARCH = 2

	Pulsar search observation is active.

	
PULSAR_TIMING = 3

	Pulsar timing observation is active.

	
TRANSIENT_SEARCH = 5

	Transient search observation is active.

	
VLBI = 6

	Very long baseline interferometry observation is active.

Health State

	
class ska_control_model.HealthState(value)

	Python enumerated type for health state.

	
DEGRADED = 1

	The device reports this state when only part of its functionality is
available. This value is optional and shall be implemented only
where it is useful.

For example, a subarray may report its health state as DEGRADED
if one of the dishes that belongs to a subarray is unresponsive (or
may report health state as FAILED).

Difference between DEGRADED and FAILED health state shall be
clearly identified (quantified) and documented. For example, the
difference between a DEGRADED and FAILED subarray might be
defined as:

	the number or percent of the dishes available;

	the number or percent of the baselines available;

	sensitivity

or some other criterion. More than one criterion may be defined for
a device.

	
FAILED = 2

	The device reports this state when unable to perform core
functionality and produce valid output.

	
OK = 0

	A device reports this state when there are no failures that are
assessed as affecting the ability of the device to perform its
function.

	
UNKNOWN = 3

	The device reports this state when unable to determine its health.

This is also an initial state, indicating that health state has not
yet been determined.

Simulation Mode

	
class ska_control_model.SimulationMode(value)

	Python enumerated type for simulation mode.

	
FALSE = 0

	The control system is connected to a real entity.

	
TRUE = 1

	The control system is connected to a simulator.

It may be connected to an entirely separate simulator, or the real
entity may be itself in a simulation mode.

Control Mode

	
class ska_control_model.ControlMode(value)

	Python enumerated type for control mode.

	
LOCAL = 1

	Monitoring and control operations are accepted only from a “local” client.

Commands and queries received from TM or any other “remote” clients
are ignored.

This mode is typically activated by a switch, or a connection on the
local control interface. The intention is to support early
integration of dishes and stations. The equipment has to be put back
in REMOTE before clients can take control again.

Note: LOCAL control mode is not a safety feature, but
rather a usability feature. Safety must be implemented separately
from the control paths.

	
REMOTE = 0

	Monitoring and control operations are accepted from all clients.

Test Mode

	
class ska_control_model.TestMode(value)

	Python enumerated type for test mode.

	
NONE = 0

	Normal mode of operation. No test mode active.

	
TEST = 1

	Test mode active.

The element’s behaviour and/or interface differs from the normal
operating mode.

To be implemented only by devices that implement one or more test
modes. The element documentation shall provide detailed description.

Communication Status

	
class ska_control_model.CommunicationStatus(value)

	The status of communication with the system under controk.

	
DISABLED = 0

	Communication is disabled.

The control system is not trying to establish/maintain a channel of
communication with the system under control. For example:

	if communication with the system under control is
connection-oriented, then there is no connection, and the control
system is not trying to establish a connection.

	if communication is by event subscription, then the control system
is unsubscribed from events.

	if communication is by polling, then the control system is not
performing that polling.

	
ESTABLISHED = 2

	The control system has established a channel of communication with
the system under control. For example:

	if communication with the system under control is
connection-oriented, then the control system has connected to the
system under control.

	if communication is by polling, then the control system is polling
the system under control, and the system under control is
responsive.

	
NOT_ESTABLISHED = 1

	Communication is sought but not established.

The control system is trying to establish/maintain a channel of
communication with the system under control, but that channel is not
currently established. For example:

	if communication with the system under control is
connection-oriented, then the control system has not yet succeeded
in establishing the connection, or the connection has been broken.

Power State

	
class ska_control_model.PowerState(value)

	Enumerated type for power state.

Used by components that rely upon a power supply, such as hardware.

	
NO_SUPPLY = 1

	The component is unsupplied with power and cannot be commanded on.

For example, the power mode of a TPM will be NO_SUPPLY if the
subrack that powers the TPM is turned off: not only is the TPM
off, but it cannot even be turned on (until the subrack has been
turned on).

	
OFF = 2

	The component is turned off but can be commanded on.

	
ON = 4

	The component is powered on and running in fully-operational mode.

	
STANDBY = 3

	The component is powered on and running in low-power standby mode.

	
UNKNOWN = 0

	The power mode is not known.

Logging Level

	
class ska_control_model.LoggingLevel(value)

	Python enumerated type for logging level.

	
DEBUG = 5

	Logs of information relevant only for debugging

	
ERROR = 2

	Logs of errors.

	
FATAL = 1

	Logs of critical events that result in component shutdown or failure.

	
INFO = 4

	Logs of information relevant to users.

	
OFF = 0

	Logging is turned off.

	
WARNING = 3

	Logs of warnings.

Result Code

	
class ska_control_model.ResultCode(value)

	Python enumerated type for command result codes.

	
ABORTED = 7

	The command in progress has been aborted.

	
FAILED = 3

	The command could not be executed.

	
NOT_ALLOWED = 6

	The command is not allowed to be executed.

	
OK = 0

	The command was executed successfully.

	
QUEUED = 2

	The command has been accepted and will be executed at a future time.

	
REJECTED = 5

	The command execution has been rejected.

	
STARTED = 1

	The command has been accepted and will start immediately.

	
UNKNOWN = 4

	The status of the command is not known.

Task Status

	
class ska_control_model.TaskStatus(value)

	The status of a task.

A task is any operation that is being performed asynchronously.

	
ABORTED = 3

	The task has been aborted.

	
COMPLETED = 5

	The task was completed.

Note that this does not necessarily imply that the task was executed
successfully. Whether the task succeeded or failed is a matter for
the ResultCode. The
COMPLETED value indicates only that execution of the task ran to
completion.

	
FAILED = 7

	The task failed to complete.

Note that this should not be used for a task that executes to
completion, but does not achieve its goal. This kind of
domain-specific notion of “succeeded” versus “failed” should be
passed in a ResultCode.
Here, FAILED means that the task executor has detected a failure
of the task to run to completion. For example, execution of the task
might have resulted in the raising of an uncaught exception.

	
IN_PROGRESS = 2

	The task is being executed.

	
NOT_FOUND = 4

	The task is not found.

	
QUEUED = 1

	The task has been accepted and will be executed at a future time.

	
REJECTED = 6

	The task was rejected.

	
STAGING = 0

	The request to execute the task has not yet been acted upon.

Faults

This module defines faults that are part of the SKA control model.

	
exception ska_control_model.faults.StateModelError

	Error in state machine model related to transitions or state.

	
__weakref__

	list of weak references to the object (if defined)

Utils

This module defines utils used in this package.

	
ska_control_model.utils.for_testing_only(func, _testing_check=<function <lambda>>)

	Return a function that checks that it is being called in testing.

This is a decorator that only calls the decorated function after
first checking that it is being called in testing. If called outside
of testing, a warning is raised.

@for_testing_only
def _straight_to_state(self, state):
 ...

	Parameters

	func (Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]) – the function to be decorated

	Return type

	Callable [https://docs.python.org/3.7/library/typing.html#typing.Callable]

	Returns

	the decorated function

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 ska_control_model	

 	
 	
 ska_control_model.faults	

 	
 	
 ska_control_model.utils	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (ska_control_model.AdminModeModel method)

 	(ska_control_model.ObsStateModel method)

 	(ska_control_model.OpStateModel method)

 	
 	__weakref__ (ska_control_model.AdminModeModel attribute)

 	(ska_control_model.faults.StateModelError attribute)

 	(ska_control_model.ObsStateModel attribute)

 	(ska_control_model.OpStateModel attribute)

A

 	
 	ABORTED (ska_control_model.ObsState attribute)

 	(ska_control_model.ResultCode attribute)

 	(ska_control_model.TaskStatus attribute)

 	
 	ABORTING (ska_control_model.ObsState attribute)

 	admin_mode (ska_control_model.AdminModeModel property)

 	AdminMode (class in ska_control_model)

 	AdminModeModel (class in ska_control_model)

C

 	
 	CALIBRATION (ska_control_model.ObsMode attribute)

 	CommunicationStatus (class in ska_control_model)

 	
 	COMPLETED (ska_control_model.TaskStatus attribute)

 	CONFIGURING (ska_control_model.ObsState attribute)

 	ControlMode (class in ska_control_model)

D

 	
 	DEBUG (ska_control_model.LoggingLevel attribute)

 	DEGRADED (ska_control_model.HealthState attribute)

 	
 	DISABLED (ska_control_model.CommunicationStatus attribute)

 	DYNAMIC_SPECTRUM (ska_control_model.ObsMode attribute)

E

 	
 	EMPTY (ska_control_model.ObsState attribute)

 	
 	ERROR (ska_control_model.LoggingLevel attribute)

 	ESTABLISHED (ska_control_model.CommunicationStatus attribute)

F

 	
 	FAILED (ska_control_model.HealthState attribute)

 	(ska_control_model.ResultCode attribute)

 	(ska_control_model.TaskStatus attribute)

 	
 	FALSE (ska_control_model.SimulationMode attribute)

 	FATAL (ska_control_model.LoggingLevel attribute)

 	FAULT (ska_control_model.ObsState attribute)

 	for_testing_only() (in module ska_control_model.utils)

H

 	
 	HealthState (class in ska_control_model)

I

 	
 	IDLE (ska_control_model.ObsMode attribute)

 	(ska_control_model.ObsState attribute)

 	IMAGING (ska_control_model.ObsMode attribute)

 	IN_PROGRESS (ska_control_model.TaskStatus attribute)

 	
 	INFO (ska_control_model.LoggingLevel attribute)

 	is_action_allowed() (ska_control_model.AdminModeModel method)

 	(ska_control_model.ObsStateModel method)

 	(ska_control_model.OpStateModel method)

L

 	
 	LOCAL (ska_control_model.ControlMode attribute)

 	
 	LoggingLevel (class in ska_control_model)

M

 	
 	MAINTENANCE (ska_control_model.AdminMode attribute)

 	
 module

 	ska_control_model.faults

 	ska_control_model.utils

N

 	
 	NO_SUPPLY (ska_control_model.PowerState attribute)

 	NONE (ska_control_model.TestMode attribute)

 	NOT_ALLOWED (ska_control_model.ResultCode attribute)

 	
 	NOT_ESTABLISHED (ska_control_model.CommunicationStatus attribute)

 	NOT_FITTED (ska_control_model.AdminMode attribute)

 	NOT_FOUND (ska_control_model.TaskStatus attribute)

O

 	
 	obs_state (ska_control_model.ObsStateModel property)

 	ObsMode (class in ska_control_model)

 	ObsState (class in ska_control_model)

 	ObsStateModel (class in ska_control_model)

 	OFF (ska_control_model.LoggingLevel attribute)

 	(ska_control_model.PowerState attribute)

 	
 	OFFLINE (ska_control_model.AdminMode attribute)

 	OK (ska_control_model.HealthState attribute)

 	(ska_control_model.ResultCode attribute)

 	ON (ska_control_model.PowerState attribute)

 	ONLINE (ska_control_model.AdminMode attribute)

 	op_state (ska_control_model.OpStateModel property)

 	OpStateModel (class in ska_control_model)

P

 	
 	perform_action() (ska_control_model.AdminModeModel method)

 	(ska_control_model.ObsStateModel method)

 	(ska_control_model.OpStateModel method)

 	
 	PowerState (class in ska_control_model)

 	PULSAR_SEARCH (ska_control_model.ObsMode attribute)

 	PULSAR_TIMING (ska_control_model.ObsMode attribute)

Q

 	
 	QUEUED (ska_control_model.ResultCode attribute)

 	(ska_control_model.TaskStatus attribute)

R

 	
 	READY (ska_control_model.ObsState attribute)

 	REJECTED (ska_control_model.ResultCode attribute)

 	(ska_control_model.TaskStatus attribute)

 	REMOTE (ska_control_model.ControlMode attribute)

 	
 	RESERVED (ska_control_model.AdminMode attribute)

 	RESETTING (ska_control_model.ObsState attribute)

 	RESOURCING (ska_control_model.ObsState attribute)

 	RESTARTING (ska_control_model.ObsState attribute)

 	ResultCode (class in ska_control_model)

S

 	
 	SCANNING (ska_control_model.ObsState attribute)

 	SimulationMode (class in ska_control_model)

 	
 ska_control_model.faults

 	module

 	
 ska_control_model.utils

 	module

 	
 	STAGING (ska_control_model.TaskStatus attribute)

 	STANDBY (ska_control_model.PowerState attribute)

 	STARTED (ska_control_model.ResultCode attribute)

 	StateModelError

T

 	
 	TaskStatus (class in ska_control_model)

 	TEST (ska_control_model.TestMode attribute)

 	
 	TestMode (class in ska_control_model)

 	TRANSIENT_SEARCH (ska_control_model.ObsMode attribute)

 	TRUE (ska_control_model.SimulationMode attribute)

U

 	
 	UNKNOWN (ska_control_model.HealthState attribute)

 	(ska_control_model.PowerState attribute)

 	(ska_control_model.ResultCode attribute)

V

 	
 	VLBI (ska_control_model.ObsMode attribute)

W

 	
 	WARNING (ska_control_model.LoggingLevel attribute)

 _static/plus.png

_static/img/logo.png
SKAO

_images/plantuml-1f71375642e6e74b56f3a31e86d59d03f9323b1f.png
RESETTING

The subarray is resetting to IDLE
from FAULT or ABORTED state

RESTARTING

restart_completed

The subarray is restarting to EMPTY
from FAULT or ABORTED state

EMPTY
The subarray has no resources

release_completed [assign_invoked Jassign_completed

obsreset_invoked "\ obsreset_invoked Testart_invoked

ABORTED
The subarray has aborted

(FAULT

The subarray has faulted

4 RESOURCING
The subarray is performing a resourcing operation

abort_invoked

obsreset_completed

lcomponent_obsfault
(from any state)

assign_completed [release_completed / assign_invoked)release_invoked

ABORTING

The subarray is aborting

abort_invoked IDLE

The subarray is unconfigured

abort_invoked abort_invoked /configure_invoked /configure_completed

CONFIGURING

The subarray is performing a configuring operation

abort_invoked component_unconfigured

Configure_completed /configure_invoked

READY

The subarray is configured

‘component_scanning /component_not_scanning

SCANNING

The subarray is scanning

_images/plantuml-4db7134e62041ecabcf056c498fc055c29d479ec.png
2
Ed
@
]
|
Ed
|

_images/plantuml-7b96cbd8f2565b31b076255bf0d0c04c75e000e0.png
INT
The Tango device is initialising

DISABLE

The Tango device is not monitoring
its telescope component.

UNKNOWN

The Tango device cannot determine
the state of its telescope component.

STANDBY

The telescope component is standing by

OoN
The telescope component has faulted The telescope component is turned on The telescope component is turned off

nav.xhtml

 Table of Contents

 		
 Welcome to ska-control-model’s documentation!

 		
 Admin Mode

 		
 Operating State

 		
 Observing State

 		
 Observing Mode

 		
 Health State

 		
 Simulation Mode

 		
 Control Mode

 		
 Test Mode

 		
 Communication Status

 		
 Power State

 		
 Logging Level

 		
 Result Code

 		
 Task Status

 		
 Faults

 		
 Utils

_plantuml/4d/4db7134e62041ecabcf056c498fc055c29d479ec.png
2
Ed
@
]
|
Ed
|

_plantuml/7b/7b96cbd8f2565b31b076255bf0d0c04c75e000e0.png
INT
The Tango device is initialising

DISABLE

The Tango device is not monitoring
its telescope component.

UNKNOWN

The Tango device cannot determine
the state of its telescope component.

STANDBY

The telescope component is standing by

OoN
The telescope component has faulted The telescope component is turned on The telescope component is turned off

_images/plantuml-9c8629e43a1625f04de2d24e3e911321899e2749.png
INT DISABLE
The Tango device = mtialeing el el et g

UNKNOWN ‘
The Tango device cannot determine

the state of its telescope component.

[monitoring]
The Tange device [s monTtarng the Telescope component.

OFF STANDBY

The telescope component is turned off L[The telescope component is standing by
OoN

The telescope component is turned on

The telescope component has faulted

_plantuml/1f/1f71375642e6e74b56f3a31e86d59d03f9323b1f.png
RESETTING

The subarray is resetting to IDLE
from FAULT or ABORTED state

RESTARTING

restart_completed

The subarray is restarting to EMPTY
from FAULT or ABORTED state

EMPTY
The subarray has no resources

release_completed [assign_invoked Jassign_completed

obsreset_invoked "\ obsreset_invoked Testart_invoked

ABORTED
The subarray has aborted

(FAULT

The subarray has faulted

4 RESOURCING
The subarray is performing a resourcing operation

abort_invoked

obsreset_completed

lcomponent_obsfault
(from any state)

assign_completed [release_completed / assign_invoked)release_invoked

ABORTING

The subarray is aborting

abort_invoked IDLE

The subarray is unconfigured

abort_invoked abort_invoked /configure_invoked /configure_completed

CONFIGURING

The subarray is performing a configuring operation

abort_invoked component_unconfigured

Configure_completed /configure_invoked

READY

The subarray is configured

‘component_scanning /component_not_scanning

SCANNING

The subarray is scanning

_static/file.png

_plantuml/9c/9c8629e43a1625f04de2d24e3e911321899e2749.png
INT DISABLE
The Tango device = mtialeing el el et g

UNKNOWN ‘
The Tango device cannot determine

the state of its telescope component.

[monitoring]
The Tange device [s monTtarng the Telescope component.

OFF STANDBY

The telescope component is turned off L[The telescope component is standing by
OoN

The telescope component is turned on

The telescope component has faulted

_static/minus.png

