
developer.skatelescope.org
Documentation

Release 0.1.0-beta

Marco Bartolini

Mar 24, 2022

HOME

1 Structure 3

2 Local Development 5
2.1 General Workflow . 5
2.2 Linting and code-style . 6
2.3 Building and Running . 6
2.4 Adding a new cicd automation service . 7
2.5 Testing With FastAPI and Pytest-BDD . 8
2.6 Publishing/Releasing . 9

3 SKA CI/CD Automation Services MR Checks 11
3.1 Checks . 11
3.2 How to Add a New Check . 12

4 SKA Slack Integration 15
4.1 Environment . 15
4.2 Slack Bolt API . 15
4.3 Plugin Features . 16
4.4 Plugin implementation . 16

5 Merge Request Checks 17

i

ii

developer.skatelescope.org Documentation, Release 0.1.0-beta

This project is the template projects that is intended for use by SKA CICD Services API Applications (mainly bots).
The project and generated projects from this template should follow the SKA Developer Portal closely. Please check
the latest guidelines, standards and practices before moving forward!

HOME 1

https://developer.skatelescope.org/en/latest/

developer.skatelescope.org Documentation, Release 0.1.0-beta

2 HOME

CHAPTER

ONE

STRUCTURE

Project structure is following a basic python file structure for FastAPI as below:

.
Dockerfile
LICENSE
Makefile
README.md
app

...
build

...
charts

...
conftest.py
docs
pyproject.toml
tests

...

Basically, this project uses the following technologies:

• Docker: To build a docker image that exposes port 80 for API endpoints.

• Kubernetes and Helm: Project also includes a helm chart to deploy the above image in a loadbalanced kubernetes
cluster.

• Python Package: Project also includes a python package so that it can be downloaded as such. (The usability of
this capability highly depends on the actual implementation!)

3

https://fastapi.tiangolo.com/

developer.skatelescope.org Documentation, Release 0.1.0-beta

4 Chapter 1. Structure

CHAPTER

TWO

LOCAL DEVELOPMENT

2.1 General Workflow

Install Poetry for Python package and environment management. This project is structured to use this tool for depen-
dency management and publishing, either install it from the website or using below command:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py |␣
→˓python -

However if you want to use other tools (Pipenv or any other tool that can work with requirements.file) run the
following script to generate a requirements file.

pip install Poetry
make exportlock

This will generate requirements.txt and requirements-dev.txt files for runtime and development environment.

2.1.1 What is Poetry and Why are we using it

Poetry is a python dependency management and packaging tool. It is similar to pipenv for dependency management but
it is more actively developed. It organizes dependencies in separate sections of the same file using pyproject.toml,
described in PEP 518 so it can specify publishing information and configure installed tools (like black, isort, tox etc.)
which makes it easy to both configure and manage dependencies and publishing.

Then, you can install all the dependencies with:

make requirements

Next, you need to define the variables that are used in each plugins (see plugins respected README files for the all
variables) in your PrivateRules.mak (needed for makefile targets) and, .env file (needed tp tests from vscode and
interactive docker development). i.e. for GitLab MR and JIRA Support services:

PRIVATE_TOKEN=...
REQUESTER=...
GITLAB_TOKEN=...
GITLAB_HEADER=...
JIRA_URL=...
JIRA_USERNAME=...
JIRA_PASSWORD=...
SLACK_BOT_TOKEN=...
UNLEASH_API_URL=...

(continues on next page)

5

https://python-poetry.org/
https://pypi.org/project/pipenv/
https://www.python.org/dev/peps/pep-0518/

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

UNLEASH_INSTANCE_ID=...
UNLEASH_ENVIRONMENT=...
RTD_TOKEN=...
GOOGLE_API_KEY=...
GOOGLE_SPREADSHEET_ID=...
NEXUS_HMAC_SIGNATURE_SECRET=...
OPENID_SECRET=...
GITLAB_CLIENT_ID=...
GITLAB_CLIENT_SECRET=...

Now, the project is ready for local development.

Note: depending on the IDE (vscode is suggested), PYTHONPATH may need to be adjusted so that IDE picks up imports
and tests correctly. Please refrain from changing the main structure (top level folders) as it may break the CI/CD
pipeline, make targets and the very fabric of the universe may be at stake.

2.2 Linting and code-style

The project follows PEP8 standard closely.

The linting step uses black, flake8, isort and pylint tools to check to code. It maybe useful to adjust your
local environment as such as well.

Run make lint to check your code to see any linting errors. make apply-formatting could also be used to auto
adjust the code style with black and isort. Note this also includes tests as well.

2.3 Building and Running

k8s note: if you are deploying or testing locally using Minikube, you should first run eval $(minikube docker-env)
before you create your images, so that Minikube will pull the images directly from your environment.

To build the project for local development (and releasing in later stages), run make build. This will build a docker
image (if a tag is present it will also tag it accordingly, or a dev tag will be used) and will build the python package as
well.

To run/deploy the project, you can use Docker and Kubernetes as described below.

2.3.1 With Docker

Testing with Docker only is also possible: make development starts the latest built docker image (make
docker-build) with app folder mounted into it and the server is set to --reload flag. This enables local devel-
opment by reflecting any change in your app/ folder to loaded into the api server as well.

6 Chapter 2. Local Development

developer.skatelescope.org Documentation, Release 0.1.0-beta

2.3.2 With Kubernetes

An example minikube installation with loadbalancer enabled could be found here - this is the suggested starting point
for testing locally with Minikube.

You want to install charts using the docker image created with make docker-build. If you ran eval $(minikube
docker-env) before building, the image will be pulled from your local cache.

Next, you want to deploy your charts. make install-chart deploys the helm chart into a k8s environment using the
default configuration with the following ingress controllers:

• NGINX

• Traefik

By default, it uses nginx for local development and testing. You can override this by providing INGRESS variable like
make install-chart INGRESS=traefik. In deployment correct ingress is automatically selected.

Using make template-chart it is possible to inspect the actual deployment that will happen with make
install-chart.

2.3.3 With VSCode

To run the app directly from VSCode for debugging purposes. Create a launch.json under your workspace configu-
ration folder (.vscode by default):

{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: FastAPI",
"type": "python",
"request": "launch",
"module": "uvicorn",
"args": ["app.main:app"],
"jinja": true,
"envFile": "${workspaceFolder}/.env"

}
]

}

2.4 Adding a new cicd automation service

In order to add a new plugin to the main host, it is required to develop it according to the following structure:

.
app

plugins
thenewplugin

mainmodule
(continues on next page)

2.4. Adding a new cicd automation service 7

https://gitlab.com/ska-telescope/sdi/deploy-minikube/
app/plugins.conf.yaml

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

mainmodule.py
tests

unit
unit_test_1.py
unit_test_2.py

The plugin must have the following features:

• there must be one module containing a router object created according to the FastAPI documentation;

• a plugin configuration must be added into this folder;

• the above plugin configuration must be also added in the default configuration file;

The configuration item corresponds to the input parameter prefix, tags and a name of the include router operation of
the FastAPI framework. There’s another parameter in the configuration file which specify the package and module file
name where to find the router object to be added in the host.

The plugin should also have a README file on its root folder.

2.4.1 Authentication

Every plugin should have his type of authentication, at the moment only 2 types of authentication can be used:

• Token Authentication via HTTP header (i.e. GitLab and Slack)

• Username and Password

The authentication configuration should be on plguin’s configuration file, example: this file. Where it must be added 3
variables, being 2 of them dependent of the type of authentication:

• auth_type which represents the type of authentication that the plugin will have. It can be equal to token or
password.

• Token:

– token_env name of the environment variable that contains the token of the plugin .

– token_header_env name of the environment variable that corresponds to the type of token header of the
service to be authenticated, for example for gitlab the token header would be X-Gitlab-Token.

• Username and Password:

– username_env name of the environment value that contains the username for the plugin authentication.

– password_env name of the environment value that contains the password for the plugin authentication.

2.5 Testing With FastAPI and Pytest-BDD

The tests are done with pytest-bdd style, and are located on the testing folder on a server.feature and a test_server.py.
To add new tests edit only server.feature file.

BDD style tests are created that test the correct functioning of:

• Check if Main route gives the Right response

• Post using a .json file (Get cannot be done with body)

• Get using a target (Post can be done only with target as well)

8 Chapter 2. Local Development

app/plugins.conf.yaml
https://fastapi.tiangolo.com/tutorial/bigger-applications/#another-module-with-apirouter
app/plugins/plugins.conf.yaml

developer.skatelescope.org Documentation, Release 0.1.0-beta

Because FastAPI is being used, tests are done by using the FastAPI TestClient - you can read more about it here.

To run all tests:

$ make unit_test
.
.
.

platform linux -- Python 3.6.9, pytest-6.1.2, py-1.9.0, pluggy-0.13.1
rootdir: /home/clean/ska-cicd-automation/testing, configfile: pytest.ini
plugins: bdd-4.0.1
collected 3 items

test_server.py::test_check_server PASSED ␣
→˓ [33%]
test_server.py::test_add_member_with_json PASSED ␣
→˓ [66%]
test_server.py::test_get_member_id PASSED ␣
→˓ [100%]

To run tests for an individual plugin, pass the PLUGIN name:

make unit_test PLUGIN=gitlab_mr

2.5.1 Manual Testing

To debug manually using an actual MR. Change the project:id, MR object_attributes:iid and MR
object_attributes:source_branch and any other fields you would like in app/plugins/gitlab_mr/tests/
unit/files/event.json. Then, using your IDE of choice, implement breakpoints to debug.

2.6 Publishing/Releasing

All the publishing should happen from the pipeline.

TL;DR: run make release to learn what you have to do!

When you are ready to publish a new version, you need to run make update-x-release where x is either patch,
minor or major. So if you want to update the patch version, you just run make update-patch-release.

This will update the necessary version labels in .release (for docker image) , pyproject.toml (for python package)
files and will make a commit and tag it accordingly. At this stage, you can use make push to manually push the docker
image to your configured registry although it is not encouraged.

Finally, run make release. Once the CI job has completed in the pipeline, make sure you trigger the manual step on
the tag ref for publishing either for docker/python or deploying the helm chart.

2.6. Publishing/Releasing 9

https://fastapi.tiangolo.com/tutorial/testing/
https://gitlab.com/ska-telescope/sdi/ska-cicd-automation/pipelines

developer.skatelescope.org Documentation, Release 0.1.0-beta

10 Chapter 2. Local Development

CHAPTER

THREE

SKA CI/CD AUTOMATION SERVICES MR CHECKS

This plugin is used to check MR quality and provide feedback on the MR window by making comments and updating
them.

It uses FastAPI to create webhook that can be set to listen for the GitLab Projects. The following environment variables
must be present, the token should have API access to the project:

PRIVATE_TOKEN=...
REQUESTER=...
JIRA_URL=...
JIRA_USERNAME=...
JIRA_PASSWORD=...
GITLAB_TOKEN=...
GITLAB_HEADER=...
UNLEASH_API_URL=...
UNLEASH_INSTANCE_ID=...
RTD_TOKEN=...

3.1 Checks

Each check should have:

• Feature Toggle Name: name of the check for runtime configuration

• Result Type: If the check is not successful, whether it should be marked as FAILURE, WARNING, or INFO

• Description: Brief description about what the check is about

• Mitigation Strategy: How to take corrective action to fix the broken check

Currently the plugin checks the MR are:

3.1.1 Automatic Fixing of Wrong Merge Request Settings

Marvin will attempt to automatically check the delete source branch and uncheck the squash commits on merge settings.
Next to each of the other Wrong Merger Request Settings messages is a Fix link, which will trigger Marvin to attempt
to fix that setting after the user is authenticated. Only users that are assigned to the merge request can trigger this
automatic setting fix feature.

11

developer.skatelescope.org Documentation, Release 0.1.0-beta

3.1.2 Marvin MR Approval

Marvin after creating the table will verify if there is any checks under the failure category failed, if so Marvin does
not approve the MR, and in the case that that MR was already approved before by him he unapproves it. If none of the
checks under the failure category failed Marvin will approve the MR.

3.1.3 Runtime Configuration

This service is using feature toggles to determine which checks to enable/disable at the runtime. It uses Unleash
integration provide by GitLab to achieve this.

For the project level configuration, a project could be disabled using Project Tags/Topics. The service uses a
blocklist to determine whether it should run the checks as well.

Precedence of configuration

• Project Level Configuration with Tags/Topics

• Feature Toggle Strategies

3.2 How to Add a New Check

Each new check must use the abstract base class, Check, to ensure to define its type, description, mitigation
strategy and check action, which performs the actual checking on the MR and returns a boolean indicating the
result.

Base Class:

class Check(ABC):

feature_toggle: str = NotImplemented

@abstractmethod
async def check(self, mr_event, proj_id, mr_id) -> bool:

pass

@abstractmethod
async def type(self) -> MessageType:

pass

@abstractmethod
async def description(self) -> str:

pass

@abstractmethod
async def mitigation_strategy(self) -> str:

pass

Example Check:

12 Chapter 3. SKA CI/CD Automation Services MR Checks

https://unleash.github.io/
models/check.py

developer.skatelescope.org Documentation, Release 0.1.0-beta

class CheckAssigneesComment(Check):
feature_toggle = "check-assignees-comment"

def __init__(self, api: GitLabApi, logger_name):
self.api = api
self.logger = logging.getLogger(logger_name)

async def check(self, mr_event, proj_id, mr_id):
mr = await self.api.get_merge_request_info(proj_id, mr_id)
self.logger.debug("Retrieved MR: %s", mr)
return len(mr["assignees"]) > 0

async def type(self) -> MessageType:
return MessageType.FAILURE

async def description(self) -> str:
return "Missing Assignee"

async def mitigation_strategy(self) -> str:
return "Please assign at least one person for the MR"

Then the necessary tests for the added checks should be added in tests folder. These tests should get picked up by the
main frameworks testing.

Finally, each check should be initialised and called in the mrevents file to be included into the list of checks that are
performed for the MRs.

3.2. How to Add a New Check 13

routers/mrevent.py

developer.skatelescope.org Documentation, Release 0.1.0-beta

14 Chapter 3. SKA CI/CD Automation Services MR Checks

CHAPTER

FOUR

SKA SLACK INTEGRATION

4.1 Environment

To develop a Slack app, it is recommended to create your own Slack workspace and test against it.

4.1.1 Marvin Use Case

If the Slack app you are working on is Marvin itself, then you can use a pre-made Slack app named Marvin-Test to
conduct your code changes, without the need for setting up your own Slack workspace.

In that case, you should use the following .env variables from the Marvin-Test app.

SLACK_BOT_TOKEN=...
SLACK_SIGNING_SECRET=...

Following the steps in this repository README, start your local testing with make development and expose it outside
your local development machine. You can do so using ngrok for instance: ngrok http 3000

Change the various Marvin-Test endpoints to point at your local deployment (i.e.: https://da0dd48a7db7.ngrok.
io/jira/support/slack/events)

You should now have the Marvin-Test Slack app connected to your local development.

4.2 Slack Bolt API

This plugin was developed using a FastAPI implementation of the Slack Bolt framework. The documentation is avail-
able on a thorough tutorial.

Note that our plugin uses asynchronous methods, which are available as part of the Bolt SDK.

Example apps are available on the Bolt Github repository.

15

https://api.slack.com/apps/A02CE9A62DN
https://ngrok.com/
https://api.slack.com/apps/A02CE9A62DN
https://slack.dev/bolt-python/tutorial/getting-started
https://github.com/slackapi/bolt-python

developer.skatelescope.org Documentation, Release 0.1.0-beta

4.3 Plugin Features

This plugin uses two integration points for Slack: the Slack Events API, and the Message Shortcuts integration.

4.3.1 Slack Events

The Bolt API listens on the /slack/events/ endpoint, and redirects all traffic through this endpoint. On Slack, we
can however configure certain Slack Events to trigger specific functionality. For more information, visit the Slack
documentation on Events.

For this example app we listen for the @mention of the bot and respond with a simple message.

4.3.2 Message Shortcuts

Slack provides two different shortcuts: a Global shortcut menu, and a Message shortcut menu. For the Jira Support
Issue plugin, the idea was to use the message contents to generate some of the contents of the Jira issue automatically,
so that the user can have a pre-populated form and quickly submit the data to Jira. It therefore made more sense to use
the Message Shortcut.

A modal is opened using the list of users that is used for populating the drop-down menu, for authorization checking first
(the user opening the modal should be on the list of users on the sheet). This list of users is created using a Google Sheet
as external data source (see below section). The list of projects in which the is also populated from this spreadsheet.

4.3.3 Google Sheets

The Google Sheets API provides a rudimentary data source for management of the list of users and projects that can
be assigned and populated with Jira tickets, respectively. The API Key and Sheet ID are both stored as environment
variables and called in the handler.

For the Marvin Slack app you can request permission to acess the spreadsheet here.

4.4 Plugin implementation

The plugin basically follows the architecture of the SKA CICD framework, but since the Bolt API is also a framework in
itself, it is easy to get confused. The plugin has the normal routers and models directories. All requests are handled
by the endpoints declared under routers/jira_support_ticket. The asynchronous call to the SlackAppHandler
is awaited, and the internal authentication with Slack is handled by the Bolt API.

Important to note is Slack’s requirement to get a response from the Web service within three seconds. This is accom-
plished by the ack() calls found in all the methods in /models/slack_handler.py.

The APIs created to integration with Jira etc are imported and used as with all other plugins.

16 Chapter 4. SKA Slack Integration

https://slack.dev/bolt-python/concepts#event-listening
https://slack.dev/bolt-python/concepts#event-listening
https://api.slack.com/reference/block-kit/block-elements#external_select
app/plugins/jira_support/models/google_sheets_handler.py
https://docs.google.com/spreadsheets/d/104Y1N7DFnCS2uQYcpVhiZF95hN6XZ9wAbb4IvT5_RDM

CHAPTER

FIVE

MERGE REQUEST CHECKS

These are all the packages, functions and scripts that form part of the project.

• SKA CI/CD Automation Services MR Checks

• SKA Slack Integration

17

	Structure
	Local Development
	General Workflow
	What is Poetry and Why are we using it

	Linting and code-style
	Building and Running
	With Docker
	With Kubernetes
	With VSCode

	Adding a new cicd automation service
	Authentication

	Testing With FastAPI and Pytest-BDD
	Manual Testing

	Publishing/Releasing

	SKA CI/CD Automation Services MR Checks
	Checks
	Automatic Fixing of Wrong Merge Request Settings
	Marvin MR Approval
	Runtime Configuration
	Precedence of configuration

	How to Add a New Check

	SKA Slack Integration
	Environment
	Marvin Use Case

	Slack Bolt API
	Plugin Features
	Slack Events
	Message Shortcuts
	Google Sheets

	Plugin implementation

	Merge Request Checks

