

Radio Astronomy Simulation, Calibration and Imaging Library

The Radio Astronomy Simulation, Calibration and Imaging Library expresses radio interferometry calibration and
imaging algorithms in python and numpy. The interfaces all operate with familiar data structures such as image,
visibility table, gain table, etc.

Source code: https://gitlab.com/ska-telescope/external/rascil-main

As of version 1.0.0, the library mostly contains high-level workflows and pipelines,
while the data models and a large number of processing components (functions) have been migrated
to ska-sdp-datamodels [https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels] and
ska-sdp-func-python [https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python],
which are directly used within RASCIL.

As of version 0.2.0, the data classes are built on the Xarray [https:/xarray.pydata.org] library, offering a
rich API for applications. For more details including how to update existing scripts, see
Use of xarray.

To achieve sufficient performance we take a dual pronged approach - using threaded libraries for shared memory
processing, and the Dask [https:/www.dask.org] library for distributed processing.

The role of the RASCIL in SKA Science Data Processing (SDP)

RASCIL was developed in SDP under the name ARL (Algorithm Reference Library) with the emphasis of creating reference
versions of standard algorithms. The ARL was therefore designed to present primarily imaging algorithms in a simple
Python-based form so that the implemented functions could be seen and understood easily. This also fulfilled the
requirement of providing a simple test version where algorithms could be tested and compared as necessary.

For an overview of the SDP see the SDP CDR
documentation [http://ska-sdp.org/publications/sdp-cdr-closeout-documentation]

More details can be found at: SKA1 SDP Algorithm Reference Library (ARL) Report [http://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000150_02_sdparlreport_part_1_-_signed.pdf]

Subsequent to the conclusion of the SDP project, it became clear that ARL could play a larger role than being limited
to a reference library. Hence, it was renamed to the Radio Astronomy Simulation, Calibration and Imaging Library
(RASCIL) and is undergoing continued development. The Algorithm Reference Library (ARL) is now frozen. The background
motivation and requirements of the ARL/RASCIL are detailed further in Background.

	Installation
	Installation via pip

	Installation via docker

	Installation via git clone

	Trouble-shooting

	Examples
	Running notebooks

	Running scripts

	SKA simulations

	Structure
	Data containers used by RASCIL

	Functions

	Workflows

	Apps

	RASCIL and DASK

	Use of xarray

	Conversion from previous data classes

	RASCIL and WAGG

	API
	Processing Components

	Workflows

	Apps

	RASCIL development
	Developing in RASCIL

	Documenting RASCIL

	Build and Release process

	Managing requirements

	Background

	Index

	Module Index

Installation

RASCIL can be run on a Linux or macOS machine or cluster of machines. At least 16GB physical
memory is necessary to run the full test suite. In general more memory is better. RASCIL uses Dask for
multi-processing and can make good use of multi-core and multi-node machines.

Installation via pip

If you just wish to run the package and do not intend to run simulations or tests, RASCIL can be installed using pip:

pip3 install --index-url=https://artefact.skao.int/repository/pypi-all/simple rascil

This will download the latest stable version. At the moment, the wheel requires python 3.9 or 3.10.
We regularly update the package to comply with the latest python versions. Compatibility with more
recent versions will also be updated.

For simulations, you must add the data in a separate step:

mkdir rascil_data
cd rascil_data
curl https://ska-telescope.gitlab.io/external/rascil-main/rascil_data.tgz -o rascil_data.tgz
tar zxf rascil_data.tgz
cd data
export RASCIL_DATA=`pwd`

If you wish to run the RASCIL examples or tests, use one of the steps below.

Installation via docker

If you are familiar with docker, an easy approach is to use docker:

	Dockerfiles for RASCIL

Installation via git clone

Use of git clone is necessary if you wish to develop and possibly contribute to the RASCIL codebase.
Installation should be straightforward. We strongly recommend the use of a python virtual environment.

RASCIL requires python 3.9+.

The installation steps are:

	Use git to make a local clone of the Github repository:

git clone https://gitlab.com/ska-telescope/external/rascil-main.git

	Change into that directory:

cd rascil

	Install the required python packages and RASCIL package (in an activated virtual environment).
The following command uses pip to install all of the requirements, including test and docs:

make install_requirements

	RASCIL makes use of a number of data files. These can be downloaded using Git LFS:

pip install git-lfs
git lfs install
git-lfs pull

The data will be pulled into the data directory within the rascil-main git source directory.
If git-lfs is not already available, then lfs will not be recognised as a valid option for git in the second step.
In this case, git-lfs can be installed via sudo apt install git-lfs or
from a tar file [https://docs.github.com/en/github/managing-large-files/installing-git-large-file-storage]

	Put the following definitions in your .bashrc:

export RASCIL=/path/to/rascil
export PYTHONPATH=$RASCIL:$PYTHONPATH

Note: if you use a virtual environment, you will not need to update your PYTHONPATH.

Trouble-shooting

Testing

Check your installation by running a subset of the tests:

pip install pytest pytest-xdist
py.test -n 4 tests/processing_components

Or the full set:

py.test -n 4 tests

	Ensure that pip is up-to-date. If not, some strange install errors may occur.

	Check that the contents of the data directories have plausible contents.
If gif-lfs has not been run successfully then the data files will just contain meta data,
leading to strange run-time errors.

	There may be some dependencies that require either conda (or brew install on a mac).

	Ensure that you have made the directory test_results to store the test results.

Casacore installation

RASCIL requires python-casacore to be installed. This is included in the requirements for the RASCIL install and so
should be installed automatically via pip. In some cases there may not be a compatible binary install (wheel) available
via pip. If not, pip will download the source code of casacore and attempt a build from source. The most common failure
mode during the source build is that it cannot find the boost-python libraries. These can be installed via pip. If
errors like this occur, once rectified, re-installing python-casacore separately via pip may be required, prior to
re-commencing the RASCIL install.

Trouble-shooting problems with a source install can be difficult. If available, this can be avoided by using anaconda
(or miniconda) as the base for an environment. It supports python-casacore which can be installed with:

conda install -c conda-forge python-casacore

It may also be possible to avoid some of the more difficult issues with building python-casacore by downloading CASA
prior to the RASCIL install.

On MacOS, we recommend using conda, and installing python-casacore with that prior to installing the other
RASCIL requirements. This proved to be the simplest way of getting casacore working without having to install
separate boost and casacore packages.

RASCIL data in notebooks

In some case the notebooks may not automatically find the RASCIL data directory, in which case explicitly setting the
RASCIL_DATA environment variable may be required: %env RASCIL_DATA=~/rascil_data/data.

Dockerfiles for RASCIL

RASCIL supports the publishing of various docker images. The related Dockerfiles
can be found in the docker directory and its subdirectories. The images are
based on a python wheel created from RASCIL.

Makefiles are also included, which support building, pushing, and tagging images.
The images are named as specified in the release file of the docker image directory,
and tagged by the RASCIL version stored in rascil/version.py.

There are various directories for docker files:

	rascil-base: A minimal RASCIL, without data

	rascil-full: Base with data

	rascil-notebook: Supports running jupyter notebook

	rascil-imaging-qa: Runs the Continuum Imaging Quality Assessment tool

	rascil-rcal: Supports running RCAL as consumer of SDP visibility receive data

Automatic publishing

The docker images are automatically built by the CI pipeline.

When the repository is tagged, and a new version of it is released,
a versioned docker images of each type is published to
the Central Artifact Repository [https://artefact.skao.int/#browse/browse:docker-all]
(CAR). To find out what versions you can download, look for the relevant
RASCIL docker image in the CAR. Example:

artefact.skao.int/rascil-base:1.0.0

Upon every merge to the master branch, docker images with the latest tag
are published to the GitLab Registry. Note that this tage is always updated
with the latest code on master, hence it changes very often:

registry.gitlab.com/ska-telescope/external/rascil/rascil-imaging-qa:latest

Build, push, and tag a set of Dockerfiles

If you want to build an image yourself, follow these steps:

	cd into one of the subdirectories

	Build the image with make build

Other useful make commands :

	push pushes the images to the docker registry

	push_latest pushes the :latest tag

	push_version pushes a version tag without the git SHA

Note, the above make commands use environment variables to
determine the image name and repository. For a full list and
defaults, please consult the
Makefile [https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/docker/make/Makefile]
in docker/make/.

Useful make commands that can be run from the docker directory:

	build_all_latest builds, and tags as latest, all the images

	rm_all removes all the images

	ls_all lists all the images

Test the images

The docker/Makefile contains commands for testing all the images.
These write results into the host /tmp area. For docker:

	make test_base

	make test_full

	make test_notebook

	make test_imaging_qa

	make test_rcal

And for singularity:

	make test_base_singularity

	make test_full_singularity

	make test_notebook_singularity

	make test_imaging_qa_singularity

	make test_rcal_singularity

Generic RASCIL images

rascil-base and rascil-full

The base and full images are available at:

artefact.skao.int/rascil-base
artefact.skao.int/rascil-full

rascil-base does not have the RASCIL test data but is smaller in size.
However, for many of the tests and demonstrations the test data is needed, which are included in rascil-full.

To run RASCIL with your home directory available inside the image:

docker run -it --volume $HOME:$HOME artefact.skao.int/rascil-full:<version>

Now let’s run an example. First it simplifies using the container if we do not
try to write inside the container, and that’s why we mapped in our $HOME directory.
So to run the /rascil/examples/scripts/imaging.py script, we first change directory
to the name of the HOME directory, which is the same inside and outside the
container, and then give the full address of the script inside the container. This time
we will show the prompts from inside the container:

% docker run -p 8888:8888 -v $HOME:$HOME -it artefact.skao.int/rascil-full:1.0.0
rascil@d0c5fc9fc19d:/rascil$ cd /<your home directory>
rascil@d0c5fc9fc19d:/<your home directory>$ python3 /rascil/examples/scripts/imaging.py
...
rascil@d0c5fc9fc19d:/<your home directory>$ ls -l imaging*.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_dirty.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_psf.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_restored.fits

In this example, we change directory to an external location (my home directory in this case,
use yours instead), and then we run the script using the absolute path name inside the container.

RASCIL Notebooks

The docker image to use with RASCIL Jupyter Notebooks is:

artefact.skao.int/rascil-notebook

Run Jupyter Notebooks inside the container:

docker run -it -p 8888:8888 --volume $HOME:$HOME artefact.skao.int/rascil-notebook:1.0.0
cd /<your home directory>
jupyter notebook --no-browser --ip 0.0.0.0 /rascil/examples/notebooks/

The Juptyer server will start and output possible URLs to use:

[I 14:08:39.041 NotebookApp] Serving notebooks from local directory: /rascil/examples/notebooks
[I 14:08:39.041 NotebookApp] The Jupyter Notebook is running at:
[I 14:08:39.042 NotebookApp] http://d0c5fc9fc19d:8888/?token=f050f82ed0f8224e559c2bdd29d4ed0d65a116346bcb5653
[I 14:08:39.042 NotebookApp] or http://127.0.0.1:8888/?token=f050f82ed0f8224e559c2bdd29d4ed0d65a116346bcb5653
[I 14:08:39.042 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[W 14:08:39.045 NotebookApp] No web browser found: could not locate runnable browser.

The 127.0.0.1 is the one we want. Enter this address in your local browser. You should see
the standard Jupyter directory page.

Images of RASCIL applications

Continuum imaging Quality Assessment tool (a.k.a imaging_qa)

imaging_qa
finds compact sources in a continuum image and compares them
to the sources used in the simulation, thus revealing the quality of the imaging.

DOCKER

Pull the image:

docker pull artefact.skao.int/rascil-imaging-qa:<version>

Run the image:

docker run -v ${PWD}:/myData -e DOCKER_PATH=${PWD} \
 -e CLI_ARGS='--ingest_fitsname_restored /myData/my_restored.fits \
 --ingest_fitsname_residual /myData/my_residual.fits' \
 --rm artefact.skao.int/rascil-imaging-qa:1.0.0

Run it from the directory where your images you want to check are. The output files will
appear in the same directory. Update the CLI_ARGS string with the command line arguments
of the imaging_qa code as needed. DOCKER_PATH is used to extract the path
of the output files the app produced in your local machine, not in the docker container. This
is used for generating the output file index files.

SINGULARITY

Pull the image:

singularity pull rascil-imaging-qa.img docker://artefact.skao.int/rascil-imaging-qa:1.0.0

Run the image:

singularity run \
 --env CLI_ARGS='--ingest_fitsname_restored test-imaging-pipeline-dask_continuum_imaging_restored.fits \
 --ingest_fitsname_residual test-imaging-pipeline-dask_continuum_imaging_residual.fits' \
 rascil-imaging-qa.img

Run it from the directory where your images you want to check are. The output files will
appear in the same directory. If the singularity image you downloaded is in a different path,
point to that path in the above command. Update the CLI_ARGS string with the command line arguments
of the imaging qa code as needed.

Providing input arguments from a file

You may create a file that contains the input arguments for the app. Here is an example of it,
called args.txt:

::

–ingest_fitsname_restored=/myData/test-imaging-pipeline-dask_continuum_imaging_restored.fits
–ingest_fitsname_residual=/myData/test-imaging-pipeline-dask_continuum_imaging_residual.fits
–check_source=True
–plot_source=True

Make sure each line contains one argument, there is an equal sign between arg and its value,
and that there aren’t any trailing white spaces in the lines (and no empty lines).
The paths to images and other input files has to be the absolute path within the container.
Here, we use the DOCKER example of mounting our data into the /myData directory.

Then, calling docker run simplifies as:

docker run -v ${PWD}:/myData -e DOCKER_PATH=${PWD} -e CLI_ARGS='@/myData/args.txt' \
--rm artefact.skao.int/rascil-imaging-qa:1.0.0

Here, we assume that your custom args.txt file is also mounted together with the data into /myData.
Provide the absolute path to that file when your run the above command.

You can use an args file to run the singularity version with same principles, baring in mind
that singularity will automatically mount your filesystem into the container with paths
matching those on your system.

RCAL visibility receive consumer

The rascil_rcal directory [https://gitlab.com/ska-telescope/external/rascil-main/-/tree/master/docker/rascil-rcal]
contains the necessary extra code and Dockerfile
to build a docker image that can be used as a consumer for the
visibility receive script [https://developer.skao.int/projects/ska-sdp-script/en/latest/scripts/vis-receive.html].
This processing script can be deployed in the
SDP [https://developer.skao.int/projects/ska-sdp-integration/en/latest/index.html] system.
It receives data packets from the Correlator and Beam Former (CBF) or its emulator.

A prototype rcal-consumer has been added to the docker image.
It formats the received data packets into objects that can be passed into
a VisibilityBucket. A VisibilityBucket is filled up until full,
i.e. when it received all frequency channel data for a single time sample.
The resulting Visibility object is then passed to
RCAL [https://developer.skatelescope.org/projects/rascil/en/latest/apps/rascil_rcal.html],
which processes the data and produces the resulting gain solutions (and optional png images).

The docker image is available from the Central Artifact Repository
(tagged with the release version number):

artefact.skao.int/rascil-rcal:<version>

and from the GitLab container registry (tagged with latest
and updated upon merge to master):

registry.gitlab.com/ska-telescope/external/rascil/rascil-rcal:latest

Running RASCIL as a cluster

The following methods of running RASCIL as a cluster, will provide a set of
docker-based environments, which host a Dask scheduler, various Dask workers
(numbers can be customized), and a Jupyter lab notebook, which directly
connects to the scheduler.

Kubernetes

RASCIL can be run as a cluster in Kubernetes [https://kubernetes.io/] using
helm [https://helm.sh/] and kubectl [https://kubernetes.io/docs/reference/kubectl/overview/]
(you need to have these two installed). If you want to run it in a local developer environment
(e.g. a laptop), we recommend using Minikube [https://minikube.sigs.k8s.io/docs/start/].

A custom values.yaml files is provided in
/rascil/docker/kubernetes [https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/docker/kubernetes/values.yaml].
It is meant to be used with a custom Dask Helm chart maintained by SKA developers,
hosted in a GitLab repository [https://gitlab.com/ska-telescope/sdp/ska-sdp-helmdeploy-charts/-/tree/master/chart-repo].
The documentation and details of the SKA Dask Helm chart can be found at
https://developer.skao.int/projects/ska-sdp-helmdeploy-charts/en/latest/charts/dask.html.

You can modify the values.yaml file, if needed, e.g. you can change the number of
worker replicas, or the docker image used (e.g. the version that should be run).
If you don’t use a PersistentVolumeClaim, remove mounts and volume sections from the
jupyter and worker entries.
(See also /rascil/docker/kubernetes/README.md [https://gitlab.com/ska-telescope/external/rascil-main/-/tree/master/docker/kubernetes/README.md])

Start Minikube and add the helm repository:

helm repo add ska-helm https://gitlab.com/ska-telescope/sdp/ska-sdp-helmdeploy-charts/-/raw/master/chart-repo
helm repo update

cd into the /rascil/docker/kubernetes directory and install the RASCIL cluster:

helm install test ska-helm/dask -f values.yaml

Instructions on how to connect to the Dask dashboard and the Jupyter lab notebook are printed in the screen,
please follow those. You can follow the deployment process and access logs using kubectl or via
``k9s` <https://k9scli.io/>`_.

To uninstall the chart and clean out all pods, run:

helm uninstall test

Note: this will remove changes you might have made in the Jupyter notebooks.

Singularity

Singularity [https://sylabs.io/docs/] can be used to load and run the docker images:

singularity pull RASCIL-full.img docker://artefact.skao.int/rascil-full:1.0.0
singularity exec RASCIL-full.img python3 /rascil/examples/scripts/imaging.py

As in docker, don’t run from the /rascil/ directory.

Inside a SLURM file singularity can be used by prefacing dask and python commands with “singularity exec”. For example:

ssh $host singularity exec /home/<your-name>/workspace/RASCIL-full.img dask-scheduler --port=8786 &
ssh $host singularity exec /home/<your-name>/workspace/RASCIL-full.img dask-worker --host ${host} --nprocs 4 --nthreads 1 \
--memory-limit 100GB $scheduler:8786 &
CMD="singularity exec /home/<your-name>/workspace/RASCIL-full.img python3 ./cluster_test_ritoy.py ${scheduler}:8786 | tee ritoy.log"
eval $CMD

Customisability

The docker images described here are ones we have found useful. However,
if you have the RASCIL code tree installed then you can also make your own versions
working from these Dockerfiles.

Important updates

Starting with version 0.3.0, RASCIL is installed as a package into the docker images and
the repository is not cloned anymore. Hence, every python script
(except the ones in the examples directory) within the image has to be
called with the -m switch in the following format, when running within the docker container, e.g.:

python -m rascil.apps.rascil_advise <args>

Examples

Running notebooks

The best way to get familiar with RASCIL is via jupyter notebooks. For example:

jupyter notebook examples/notebooks/imaging.ipynb

See the jupyter notebooks below:

Some functions initially developed for the LOFAR telescope pipeline are made available in RASCIL. The following notebooks show how the functions are integrated.

In addition, there are other notebooks in examples/notebooks that are not built as part of this documentation.
In some cases it may be necessary to add the following to the notebook to locate the RASCIL data
%env RASCIL_DATA=~/rascil_data/data

Running scripts

Some example scripts are found in the directory examples/scripts.

SKA simulations

	Index

	Module Index

Structure

Those familiar with other calibration and imaging packages will find the following information useful in navigating the
RASCIL. Not all functions are listed here but are contained in the API.

The long form of the name is given for all entries but all function names are unique so a given function can be
accessed using the very top level import:

import rascil.processing_components
import rascil.workflows
import rascil.apps

	Data containers used by RASCIL

	Functions
	Read existing Measurement Set

	Image

	Workflows
	Calibration workflows

	Imaging workflows

	Pipeline workflows

	Simulation workflows

	Execution

	Apps
	Imaging

	Other

	RASCIL and DASK
	Using RASCIL and Dask on a cluster

	Logging

	Use of xarray

	Conversion from previous data classes

	RASCIL and WAGG
	Installing WAGG module

	Using WAGG GPU-based predict and invert functions

Data containers used by RASCIL

RASCIL holds data in python Classes. The bulk data and attributes are usually kept in a xarray.Dataset.
For each xarray based class there is an accessor which holds class specific methods and properties.

Note that the data models have been migrated into
the SKA SDP Python-based Data Models [https://gitlab.com/ska-telescope/sdp/ska-sdp-datamodels.git] directory.
Please refer to the documentation there for more information.

Functions

NOTE: Some processing functions have been migrated to the
ska-sdp-func-python repository [https://gitlab.com/ska-telescope/sdp/ska-sdp-func-python.git],
please refer to the documentation there for information.
Functions on this page is an incomplete list.

Read existing Measurement Set

Casacore must be installed for MS reading and writing:

	List contents of a MeasurementSet: rascil.processing_components.visibility.base.list_ms()

	Creates a list of Visibilities, one per FIELD_ID and DATA_DESC_ID: rascil.processing_components.visibility.base.create_visibility_from_ms()

Image

	Image operations: rascil.processing_components.image.operations()

	Import from FITS: rascil.processing_components.image.operations.import_image_from_fits()

	Re-project coordinate system: rascil.processing_components.image.operations.reproject_image()

	Smooth image: rascil.processing_components.image.operations.smooth_image()

	FFT: rascil.processing_components.image.operations.fft_image_to_griddata_with_wcs()

	Remove continuum: rascil.processing_components.image.operations.remove_continuum_image()

Workflows

Workflows coordinate processing using the data models, processing components, and processing library. These are high
level functions, and are available in an rsexecute (i.e. dask) version and sometimes a scalar version.

Calibration workflows

	Calibrate workflow: rascil.workflows.rsexecute.calibration.calibrate_list_rsexecute_workflow()

Imaging workflows

	Invert: rascil.workflows.rsexecute.imaging.invert_list_rsexecute_workflow()

	Predict: rascil.workflows.rsexecute.imaging.predict_list_rsexecute_workflow()

	Deconvolve: rascil.workflows.rsexecute.imaging.deconvolve_list_rsexecute_workflow()

Pipeline workflows

	ICAL: rascil.workflows.rsexecute.pipelines.ical_skymodel_list_rsexecute_workflow()

	Continuum imaging: rascil.workflows.rsexecute.pipelines.continuum_imaging_skymodel_list_rsexecute_workflow()

	Spectral line imaging: rascil.workflows.rsexecute.pipelines.spectral_line_imaging_skymodel_list_rsexecute_workflow()

	MPCCAL: rascil.workflows.rsexecute.pipelines.mpccal_skymodel_list_rsexecute_workflow()

Simulation workflows

	Testing and simulation support: rascil.workflows.rsexecute.simulation.simulate_list_rsexecute_workflow()

Execution

	Execution framework (an interface to Dask): rascil.workflows.rsexecute.execution_support()

Apps

Apps are command line applications written using the data models, processing components, and processing library.

Imaging

	rascil_imager

	rascil_sensitivity

	rascil_rcal

	rascil_vis_ms

	rascil_advise

	rascil_image_check

	imaging_qa

	performance_analysis

Other

	rascil_vis_ms

Dockerfiles for RASCIL

RASCIL supports the publishing of various docker images. The related Dockerfiles
can be found in the docker directory and its subdirectories. The images are
based on a python wheel created from RASCIL.

Makefiles are also included, which support building, pushing, and tagging images.
The images are named as specified in the release file of the docker image directory,
and tagged by the RASCIL version stored in rascil/version.py.

There are various directories for docker files:

	rascil-base: A minimal RASCIL, without data

	rascil-full: Base with data

	rascil-notebook: Supports running jupyter notebook

	rascil-imaging-qa: Runs the Continuum Imaging Quality Assessment tool

	rascil-rcal: Supports running RCAL as consumer of SDP visibility receive data

Automatic publishing

The docker images are automatically built by the CI pipeline.

When the repository is tagged, and a new version of it is released,
a versioned docker images of each type is published to
the Central Artifact Repository [https://artefact.skao.int/#browse/browse:docker-all]
(CAR). To find out what versions you can download, look for the relevant
RASCIL docker image in the CAR. Example:

artefact.skao.int/rascil-base:1.0.0

Upon every merge to the master branch, docker images with the latest tag
are published to the GitLab Registry. Note that this tage is always updated
with the latest code on master, hence it changes very often:

registry.gitlab.com/ska-telescope/external/rascil/rascil-imaging-qa:latest

Build, push, and tag a set of Dockerfiles

If you want to build an image yourself, follow these steps:

	cd into one of the subdirectories

	Build the image with make build

Other useful make commands :

	push pushes the images to the docker registry

	push_latest pushes the :latest tag

	push_version pushes a version tag without the git SHA

Note, the above make commands use environment variables to
determine the image name and repository. For a full list and
defaults, please consult the
Makefile [https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/docker/make/Makefile]
in docker/make/.

Useful make commands that can be run from the docker directory:

	build_all_latest builds, and tags as latest, all the images

	rm_all removes all the images

	ls_all lists all the images

Test the images

The docker/Makefile contains commands for testing all the images.
These write results into the host /tmp area. For docker:

	make test_base

	make test_full

	make test_notebook

	make test_imaging_qa

	make test_rcal

And for singularity:

	make test_base_singularity

	make test_full_singularity

	make test_notebook_singularity

	make test_imaging_qa_singularity

	make test_rcal_singularity

Generic RASCIL images

rascil-base and rascil-full

The base and full images are available at:

artefact.skao.int/rascil-base
artefact.skao.int/rascil-full

rascil-base does not have the RASCIL test data but is smaller in size.
However, for many of the tests and demonstrations the test data is needed, which are included in rascil-full.

To run RASCIL with your home directory available inside the image:

docker run -it --volume $HOME:$HOME artefact.skao.int/rascil-full:<version>

Now let’s run an example. First it simplifies using the container if we do not
try to write inside the container, and that’s why we mapped in our $HOME directory.
So to run the /rascil/examples/scripts/imaging.py script, we first change directory
to the name of the HOME directory, which is the same inside and outside the
container, and then give the full address of the script inside the container. This time
we will show the prompts from inside the container:

% docker run -p 8888:8888 -v $HOME:$HOME -it artefact.skao.int/rascil-full:1.0.0
rascil@d0c5fc9fc19d:/rascil$ cd /<your home directory>
rascil@d0c5fc9fc19d:/<your home directory>$ python3 /rascil/examples/scripts/imaging.py
...
rascil@d0c5fc9fc19d:/<your home directory>$ ls -l imaging*.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_dirty.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_psf.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_restored.fits

In this example, we change directory to an external location (my home directory in this case,
use yours instead), and then we run the script using the absolute path name inside the container.

RASCIL Notebooks

The docker image to use with RASCIL Jupyter Notebooks is:

artefact.skao.int/rascil-notebook

Run Jupyter Notebooks inside the container:

docker run -it -p 8888:8888 --volume $HOME:$HOME artefact.skao.int/rascil-notebook:1.0.0
cd /<your home directory>
jupyter notebook --no-browser --ip 0.0.0.0 /rascil/examples/notebooks/

The Juptyer server will start and output possible URLs to use:

[I 14:08:39.041 NotebookApp] Serving notebooks from local directory: /rascil/examples/notebooks
[I 14:08:39.041 NotebookApp] The Jupyter Notebook is running at:
[I 14:08:39.042 NotebookApp] http://d0c5fc9fc19d:8888/?token=f050f82ed0f8224e559c2bdd29d4ed0d65a116346bcb5653
[I 14:08:39.042 NotebookApp] or http://127.0.0.1:8888/?token=f050f82ed0f8224e559c2bdd29d4ed0d65a116346bcb5653
[I 14:08:39.042 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[W 14:08:39.045 NotebookApp] No web browser found: could not locate runnable browser.

The 127.0.0.1 is the one we want. Enter this address in your local browser. You should see
the standard Jupyter directory page.

Images of RASCIL applications

Continuum imaging Quality Assessment tool (a.k.a imaging_qa)

imaging_qa
finds compact sources in a continuum image and compares them
to the sources used in the simulation, thus revealing the quality of the imaging.

DOCKER

Pull the image:

docker pull artefact.skao.int/rascil-imaging-qa:<version>

Run the image:

docker run -v ${PWD}:/myData -e DOCKER_PATH=${PWD} \
 -e CLI_ARGS='--ingest_fitsname_restored /myData/my_restored.fits \
 --ingest_fitsname_residual /myData/my_residual.fits' \
 --rm artefact.skao.int/rascil-imaging-qa:1.0.0

Run it from the directory where your images you want to check are. The output files will
appear in the same directory. Update the CLI_ARGS string with the command line arguments
of the imaging_qa code as needed. DOCKER_PATH is used to extract the path
of the output files the app produced in your local machine, not in the docker container. This
is used for generating the output file index files.

SINGULARITY

Pull the image:

singularity pull rascil-imaging-qa.img docker://artefact.skao.int/rascil-imaging-qa:1.0.0

Run the image:

singularity run \
 --env CLI_ARGS='--ingest_fitsname_restored test-imaging-pipeline-dask_continuum_imaging_restored.fits \
 --ingest_fitsname_residual test-imaging-pipeline-dask_continuum_imaging_residual.fits' \
 rascil-imaging-qa.img

Run it from the directory where your images you want to check are. The output files will
appear in the same directory. If the singularity image you downloaded is in a different path,
point to that path in the above command. Update the CLI_ARGS string with the command line arguments
of the imaging qa code as needed.

Providing input arguments from a file

You may create a file that contains the input arguments for the app. Here is an example of it,
called args.txt:

::

–ingest_fitsname_restored=/myData/test-imaging-pipeline-dask_continuum_imaging_restored.fits
–ingest_fitsname_residual=/myData/test-imaging-pipeline-dask_continuum_imaging_residual.fits
–check_source=True
–plot_source=True

Make sure each line contains one argument, there is an equal sign between arg and its value,
and that there aren’t any trailing white spaces in the lines (and no empty lines).
The paths to images and other input files has to be the absolute path within the container.
Here, we use the DOCKER example of mounting our data into the /myData directory.

Then, calling docker run simplifies as:

docker run -v ${PWD}:/myData -e DOCKER_PATH=${PWD} -e CLI_ARGS='@/myData/args.txt' \
--rm artefact.skao.int/rascil-imaging-qa:1.0.0

Here, we assume that your custom args.txt file is also mounted together with the data into /myData.
Provide the absolute path to that file when your run the above command.

You can use an args file to run the singularity version with same principles, baring in mind
that singularity will automatically mount your filesystem into the container with paths
matching those on your system.

RCAL visibility receive consumer

The rascil_rcal directory [https://gitlab.com/ska-telescope/external/rascil-main/-/tree/master/docker/rascil-rcal]
contains the necessary extra code and Dockerfile
to build a docker image that can be used as a consumer for the
visibility receive script [https://developer.skao.int/projects/ska-sdp-script/en/latest/scripts/vis-receive.html].
This processing script can be deployed in the
SDP [https://developer.skao.int/projects/ska-sdp-integration/en/latest/index.html] system.
It receives data packets from the Correlator and Beam Former (CBF) or its emulator.

A prototype rcal-consumer has been added to the docker image.
It formats the received data packets into objects that can be passed into
a VisibilityBucket. A VisibilityBucket is filled up until full,
i.e. when it received all frequency channel data for a single time sample.
The resulting Visibility object is then passed to
RCAL [https://developer.skatelescope.org/projects/rascil/en/latest/apps/rascil_rcal.html],
which processes the data and produces the resulting gain solutions (and optional png images).

The docker image is available from the Central Artifact Repository
(tagged with the release version number):

artefact.skao.int/rascil-rcal:<version>

and from the GitLab container registry (tagged with latest
and updated upon merge to master):

registry.gitlab.com/ska-telescope/external/rascil/rascil-rcal:latest

Running RASCIL as a cluster

The following methods of running RASCIL as a cluster, will provide a set of
docker-based environments, which host a Dask scheduler, various Dask workers
(numbers can be customized), and a Jupyter lab notebook, which directly
connects to the scheduler.

Kubernetes

RASCIL can be run as a cluster in Kubernetes [https://kubernetes.io/] using
helm [https://helm.sh/] and kubectl [https://kubernetes.io/docs/reference/kubectl/overview/]
(you need to have these two installed). If you want to run it in a local developer environment
(e.g. a laptop), we recommend using Minikube [https://minikube.sigs.k8s.io/docs/start/].

A custom values.yaml files is provided in
/rascil/docker/kubernetes [https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/docker/kubernetes/values.yaml].
It is meant to be used with a custom Dask Helm chart maintained by SKA developers,
hosted in a GitLab repository [https://gitlab.com/ska-telescope/sdp/ska-sdp-helmdeploy-charts/-/tree/master/chart-repo].
The documentation and details of the SKA Dask Helm chart can be found at
https://developer.skao.int/projects/ska-sdp-helmdeploy-charts/en/latest/charts/dask.html.

You can modify the values.yaml file, if needed, e.g. you can change the number of
worker replicas, or the docker image used (e.g. the version that should be run).
If you don’t use a PersistentVolumeClaim, remove mounts and volume sections from the
jupyter and worker entries.
(See also /rascil/docker/kubernetes/README.md [https://gitlab.com/ska-telescope/external/rascil-main/-/tree/master/docker/kubernetes/README.md])

Start Minikube and add the helm repository:

helm repo add ska-helm https://gitlab.com/ska-telescope/sdp/ska-sdp-helmdeploy-charts/-/raw/master/chart-repo
helm repo update

cd into the /rascil/docker/kubernetes directory and install the RASCIL cluster:

helm install test ska-helm/dask -f values.yaml

Instructions on how to connect to the Dask dashboard and the Jupyter lab notebook are printed in the screen,
please follow those. You can follow the deployment process and access logs using kubectl or via
``k9s` <https://k9scli.io/>`_.

To uninstall the chart and clean out all pods, run:

helm uninstall test

Note: this will remove changes you might have made in the Jupyter notebooks.

Singularity

Singularity [https://sylabs.io/docs/] can be used to load and run the docker images:

singularity pull RASCIL-full.img docker://artefact.skao.int/rascil-full:1.0.0
singularity exec RASCIL-full.img python3 /rascil/examples/scripts/imaging.py

As in docker, don’t run from the /rascil/ directory.

Inside a SLURM file singularity can be used by prefacing dask and python commands with “singularity exec”. For example:

ssh $host singularity exec /home/<your-name>/workspace/RASCIL-full.img dask-scheduler --port=8786 &
ssh $host singularity exec /home/<your-name>/workspace/RASCIL-full.img dask-worker --host ${host} --nprocs 4 --nthreads 1 \
--memory-limit 100GB $scheduler:8786 &
CMD="singularity exec /home/<your-name>/workspace/RASCIL-full.img python3 ./cluster_test_ritoy.py ${scheduler}:8786 | tee ritoy.log"
eval $CMD

Customisability

The docker images described here are ones we have found useful. However,
if you have the RASCIL code tree installed then you can also make your own versions
working from these Dockerfiles.

Important updates

Starting with version 0.3.0, RASCIL is installed as a package into the docker images and
the repository is not cloned anymore. Hence, every python script
(except the ones in the examples directory) within the image has to be
called with the -m switch in the following format, when running within the docker container, e.g.:

python -m rascil.apps.rascil_advise <args>

RASCIL and DASK

RASCIL uses Dask for distributed processing:

http://dask.pydata.org/en/latest/

https://github.com/dask/dask-tutorial

Running RASCIL and Dask on a single machine is straightforward. First define a graph and then compute it either by
calling the compute method of the graph or by passing the graph to a dask client.

A typical graph will flow from a set of input visibility sets to an image or set of images. In the course
of constructing a graph, we will need to know the data elements and the functions transforming brtween them.
These are well-modeled in RASCIL.

In order that Dask.delayed processing can be switched on and off, and that the same code is used for Dask and
non-Dask processing, we have wrapped Dask.delayed in rascil.workflows.rsexecute.execution_support().
An example is:

rsexecute.set_client(use_dask=True)
continuum_imaging_list = \
 continuum_imaging_list_rsexecute_workflow(vis_list, model_imagelist=self.model_imagelist, context='2d',
 algorithm='mmclean', facets=1,
 scales=[0, 3, 10],
 niter=1000, fractional_threshold=0.1,
 nmoments=2, nchan=self.freqwin,
 threshold=2.0, nmajor=5, gain=0.1,
 deconvolve_facets=8, deconvolve_overlap=16,
 deconvolve_taper='tukey')
clean, residual, restored = rsexecute.compute(continuum_imaging_list, sync=True)

By default, rsexecute is initialised to use the Dask process scheduler with one worker per core. This can be
changed by a call to rsexecute.set_client:

rsexecute.set_client(use_dask=True, nworkers=4)

If use_dask is True then a Dask graph is constructed via calls to rsexecute.execute() for subsequent execution.

If use_dask is False then the named function is called immediately, and the execution is therefore single threaded:

rsexecute.set_client(use_dask=False)

Note that debugging is easiest if Dask is switched off (use_dask=False)

The pipeline workflow
rascil.workflows.rsexecute.pipelines.continuum_imaging_list_rsexecute_workflow() is itself assembled using the
execution framework (an interface to Dask): rascil.workflows.rsexecute.execution_support().

The functions for creating graphs are:

	Calibrate workflow: rascil.workflows.rsexecute.calibration.calibrate_list_rsexecute_workflow()

	Invert: rascil.workflows.rsexecute.imaging.invert_list_rsexecute_workflow()

	Predict: rascil.workflows.rsexecute.imaging.predict_list_rsexecute_workflow()

	Deconvolve: rascil.workflows.rsexecute.imaging.deconvolve_list_rsexecute_workflow()

	ICAL: rascil.workflows.rsexecute.pipelines.ical_list_rsexecute_workflow()

	Continuum imaging: rascil.workflows.rsexecute.pipelines.continuum_imaging_list_rsexecute_workflow()

	Spectral line imaging: rascil.workflows.rsexecute.pipelines.spectral_line_imaging_list_rsexecute_workflow()

	MPCCAL: rascil.workflows.rsexecute.pipelines.mpccal_skymodel_list_rsexecute_workflow()

	Testing and simulation support: rascil.workflows.rsexecute.simulation.simulate_list_rsexecute_workflow()

In addition there are notebooks that use components in workflows/notebooks.

These notebooks are scaled to run on a 2017-era laptop (4 cores, 16GB) but can be changed to larger scales. Both
explicitly create a client and output the URL (usually http://127.0.0.1:8787) for the Dask diagnostics. Of these the
status page is most useful, but the other pages are each worth investigating.

[image: _images/status_page.png]

Using RASCIL and Dask on a cluster

Running on a cluster is a bit more complicated. On a single node, Dask/rsexecute use a process-oriented
scheduler. On a cluster, it is necessary to use the distributed scheduler.

You can start the distributed scheduler and workers by hand, using the dask-ssh command (more below). To
communicate the IP address of the scheduler, set the environment variable RASCIL_DASK_SCHEDULER appropriately:

export RASCIL_DASK_SCHEDULER=192.168.2.10:8786

If you do this, remember to start the workers as well. dask-ssh is useful for this:

c=get_dask_client(timeout=30)
rsexecute.set_client(c)

get_dask_client will look for a scheduler via the environment variable RASCIL_DASK_SCHEDULER. It that does not exist, it will start a Client using the default Dask approach but that will be a single node scheduler.

Darwin and P3 uses SLURM for scheduling. There is python binding of DRMAA that could in principle be used to
queue the processing. However a simple edited job submission script is also sufficient.

On P3, each node has 16 cores, and each core has 8GB. Usually this is sometimes insufficient for RASCIL and so some cores must be not used so the memory can be used by other cores. To run 8 workers and one scheduler on 8 nodes, the SLURM batch file should look something like:

#!/bin/bash
#!
#! Dask job script for P3
#! Tim Cornwell
#!
#! Name of the job:
#SBATCH -J IMAGING
#! Which project should be charged:
#SBATCH -A SKA-SDP
#! How many whole nodes should be allocated?
#SBATCH --nodes=8
#! How many (MPI) tasks will there be in total? (<= nodes*16)
#SBATCH --ntasks=8
#! Memory limit: P3 has roughly 107GB per node
#SBATCH --mem 107000
#! How much wallclock time will be required?
#SBATCH --time=23:59:59
#! What types of email messages do you wish to receive?
#SBATCH --mail-type=FAIL,END
#! Where to send email messages
#SBATCH --mail-user=realtimcornwell@gmail.com
#! Uncomment this to prevent the job from being requeued (e.g. if
#! interrupted by node failure or system downtime):
##SBATCH --no-requeue
#! Do not change:
#SBATCH -p compute

#SBATCH --exclusive

#! Modify the settings below to specify the application's environment, location
#! and launch method:

#! Optionally modify the environment seen by the application
#! (note that SLURM reproduces the environment at submission irrespective of ~/.bashrc):
module purge # Removes all modules still loaded

#! Set up python
. $HOME/alaska-venv/bin/activate
export PYTHONPATH=$PYTHONPATH:$ARL
echo "PYTHONPATH is ${PYTHONPATH}"

echo -e "Running python: `which python`"
echo -e "Running dask-scheduler: `which dask-scheduler`"

cd $SLURM_SUBMIT_DIR
echo -e "Changed directory to `pwd`.\n"

JOBID=${SLURM_JOB_ID}
echo ${SLURM_JOB_NODELIST}

#! Create a hostfile:
scontrol show hostnames $SLURM_JOB_NODELIST | uniq > hostfile.$JOBID

scheduler=$(head -1 hostfile.$JOBID)
hostIndex=0
for host in `cat hostfile.$JOBID`; do
 echo "Working on $host"
 if ["$hostIndex" = "0"]; then
 echo "run dask-scheduler"
 ssh $host dask-scheduler --port=8786 &
 sleep 5
 fi
 echo "run dask-worker"
 ssh $host dask-worker --nprocs 1 --nthreads 8 --interface ib0 \
 --memory-limit 256GB --local-directory /mnt/storage-ssd/tim/dask-workspace/${host} $scheduler:8786 &
 sleep 1
 hostIndex="1"
done
echo "Scheduler and workers now running"

#! We need to tell dask Client (inside python) where the scheduler is running
export ARL_DASK_SCHEDULER=${scheduler}:8786
echo "Scheduler is running at ${scheduler}"

CMD="python ../clean_ms_noniso.py --ngroup 1 --nworkers 0 --weighting uniform --context wprojectwstack --nwslabs 9 \
--mode pipeline --niter 1000 --nmajor 3 --fractional_threshold 0.2 --threshold 0.01 \
--amplitude_loss 0.02 --deconvolve_facets 8 --deconvolve_overlap 16 --restore_facets 4 \
--msname /mnt/storage-ssd/tim/Code/sim-low-imaging/data/noniso/GLEAM_A-team_EoR1_160_MHz_no_errors.ms \
--time_coal 0.0 --frequency_coal 0.0 --channels 0 1 \
--plot False --fov 2.5 --single False | tee clean_ms.log"

eval $CMD

In the command CMD remember to shutdown the Client so the batch script will close the background dask-ssh and then exit.

Thw diagnostic pages can be tunneled. RASCIL emits the URL of the diagnostic page. For example:

http://10.143.1.25:8787

Then to tunnel the pages:

ssh hpccorn1@login.hpc.cam.ac.uk -L8080:10.143.1.25:8787

The diagnostic page is available from your local browser at:

127.0.0.1:8080

Logging

Logging is difficult when using distributed processing. Here’s a solution that works. At the beginning of your script or notebook, define a function to initialize the logger:

def init_logging():
 log.info("Logging to %s/clean_ms_dask.log" % cwd)
 logging.basicConfig(filename='%s/clean_ms_dask.log' % cwd,
 filemode='a',
 format='%(thread)s %(asctime)s.%(msecs)d %(name)s %(levelname)s %(message)s',
 datefmt='%H:%M:%S',
 level=logging.DEBUG)

log = logging.getLogger()
log.setLevel(logging.INFO)
log.addHandler(logging.StreamHandler(sys.stdout))
log.addHandler(logging.StreamHandler(sys.stderr))
init_logging()
...
rsexecute.run(init_logging)

To ensure that the Dask workers get the same setup, you will need to run init_logging() on each worker using the
rsexecute.run() function:

rsexecute.run(init_logging)

or:

rsexecute.set_client(use_dask=True)
rsexecute.run(init_logging)

This will log to the same file. It is also possible to set up separate log file per worker by suitably changing init_logger.

Use of xarray

From release 0.2+, RASCIL has moved to use the Xarray [https:/www.dask.org] library instead of numpy in the
data classes. RASCIL data classes are now all derived from xarray.Dataset. This change is motivated
by the large range of capababilities available from xarray. These include:

	Named dimensions and coordinates, allowing access via quantities such as time. frequency, polarisation, receptor

	Indexing, selection, iteration, and conditions

	Support of split-apply-recombine operations

	Interpolation in coordinates, including missing values

	Automatic invocation of Dask for array operations

	Arbitrary meta data as attributes

We have chosen to make the RASCIL data classes derive from xarray.Dataset. Instead of adding
class methods to the RASCIL data class, which would introduce some interface fragility
as xarray changes over time, we have used data accessors to control access to
methods specfic to the class. This design is suggested in the xarray documentation
on extending xarray. Examples:

Flagged visibility
vis.visibility_acc.flagged_vis

UVW in wavelengths
vis.visibility_acc.uvw_lambda

DataArray sizes
vis.visibility_acc.datasizes

Phasecentre as an astropy.SkyCoord
im.image_acc.phasecentre

Image RA, Dec grid
im.image_acc.ra_dec_mesh

Gaintable number of receptors
gt.gaintable_acc.nrec

For examples of the capabilities afforded by xarray see the jupyter notebooks below:

Here is a simple example of how the capabilities of xarray can be used:

vis = create_visibility_from_ms(ms)[0]

Don't squeeze out the unit dimensions because we will want
them for the concat
chan_vis = [v[1] for v in vis.groupby_bins(dim, bins=2)]

Predict visibility from a model.
chan_vis = [predict_ng(vis, model) in chan_vis]

Now concatenate
newvis = xarray.concat(chan_vis, dim=dim, data_vars="minimal")

Conversion from previous data classes

The steps required are:

	For Image, GridData, and ConvolutionFunction, the name of the data variable is pixels so for example:

The previous numpy format
im.data
as an Xarray becomes
im["pixels"]
as an numpy array or Dask array becomes
im["pixels"].data
as an numpy array becomes
im["pixels"].values
The properties now require using the accessor class. For example:
im.nchan
becomes
im.image_acc.nchan
or directly to the attributes of the xarray.Dataset
im.attrs["nchan"]

	For Visibility, the various columns become data variables:

The numpy format
bvis.data["vis"]
becomes
bvis["vis"]
as an numpy array or Dask array becomes
bvis["vis"].data
as an numpy array becomes
bvis["vis"].values
The properties now require using the accessor class. For example:
bvis.nchan
becomes
bvis.visibility_acc.nchan
or directly to the attributes of the xarray.Dataset
bvis.attrs["nchan"]
The convenience methods for handling flags also require the accessor:
bvis.flagged_vis
becomes
bvis.visibility_acc.flagged_vis

RASCIL and WAGG

RASCIL can use GPU-based version of nifty-gridder called WAGG for the gridding-degridding operations:

https://gitlab.com/ska-telescope/sdp/ska-gridder-nifty-cuda/-/tree/sim-874-python-wrapper

There are two function counterparts to predict_ng and invert_ng called predict_wg and invert_wg,

WAGG needs to be installed from its repository after the RASCIL installation. WAGG uses numpy to build the installation wheel, and it will download the recent one if numpy is absent in a system. The numpy version mismatch can cause the WAGG crash. By installing WAGG after RASCIL, we make sure it uses the numpy version that RASCIL requires for the build.

Installing WAGG module

To install WAGG it is required to clone the repository, switch to the python wrapper branch, change to python folder and run pip install . , i.e.:

git clone https://gitlab.com/ska-telescope/sdp/ska-gridder-nifty-cuda.git
cd ska-gridder-nifty-cuda
git checkout --track origin/sim-874-python-wrapper
cd python
pip install .

Alternatively, WAGG can be installed directly with pip:

pip install git+http://gitlab.com/ska-telescope/sdp/ska-gridder-nifty-cuda.git@sim-874-python-wrapper#subdirectory=python

Using WAGG GPU-based predict and invert functions

WAGG module makes a use of Nvidia runtime system, called NVRTC. It is a runtime compilation library for CUDA C++.
It accepts CUDA C++ source code in the form of a string, and outputs GPU-specific PTX (Parallel Thread Execution) instructions.
The PTX code generated by NVRTC can be loaded and linked with other modules of the CUDA Driver API.
More information on NVRTC can be found on CUDA website, https://docs.nvidia.com/cuda/nvrtc/index.html .

When the runtime support is installed, the functions predict_wg and invert_wg can be used as the CPU-based predict_ng and invert_ng since the parameters are the same.
One can find an example on how to use the functions predict_ng and invert_ng in the Imaging and deconvolution demonstration Jupyter notebook in Examples section.

API

Here is a quick guide to the layout of the package:

	rascil.processing_components: Processing functions used in algorithms

	rascil.workflows: Distributed processing workflows

	rascil.apps: CLI apps

	examples: Example scripts and notebooks

	tests: Unit and regression tests

	docs: Complete documentation. Includes non-interactive output of examples.

	rascil.data: Data used for simulations

The API is specified in the rascil directory.

	Processing Components

	Workflows

	Apps

	Index

	Module Index

Dockerfiles for RASCIL

RASCIL supports the publishing of various docker images. The related Dockerfiles
can be found in the docker directory and its subdirectories. The images are
based on a python wheel created from RASCIL.

Makefiles are also included, which support building, pushing, and tagging images.
The images are named as specified in the release file of the docker image directory,
and tagged by the RASCIL version stored in rascil/version.py.

There are various directories for docker files:

	rascil-base: A minimal RASCIL, without data

	rascil-full: Base with data

	rascil-notebook: Supports running jupyter notebook

	rascil-imaging-qa: Runs the Continuum Imaging Quality Assessment tool

	rascil-rcal: Supports running RCAL as consumer of SDP visibility receive data

Automatic publishing

The docker images are automatically built by the CI pipeline.

When the repository is tagged, and a new version of it is released,
a versioned docker images of each type is published to
the Central Artifact Repository [https://artefact.skao.int/#browse/browse:docker-all]
(CAR). To find out what versions you can download, look for the relevant
RASCIL docker image in the CAR. Example:

artefact.skao.int/rascil-base:1.0.0

Upon every merge to the master branch, docker images with the latest tag
are published to the GitLab Registry. Note that this tage is always updated
with the latest code on master, hence it changes very often:

registry.gitlab.com/ska-telescope/external/rascil/rascil-imaging-qa:latest

Build, push, and tag a set of Dockerfiles

If you want to build an image yourself, follow these steps:

	cd into one of the subdirectories

	Build the image with make build

Other useful make commands :

	push pushes the images to the docker registry

	push_latest pushes the :latest tag

	push_version pushes a version tag without the git SHA

Note, the above make commands use environment variables to
determine the image name and repository. For a full list and
defaults, please consult the
Makefile [https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/docker/make/Makefile]
in docker/make/.

Useful make commands that can be run from the docker directory:

	build_all_latest builds, and tags as latest, all the images

	rm_all removes all the images

	ls_all lists all the images

Test the images

The docker/Makefile contains commands for testing all the images.
These write results into the host /tmp area. For docker:

	make test_base

	make test_full

	make test_notebook

	make test_imaging_qa

	make test_rcal

And for singularity:

	make test_base_singularity

	make test_full_singularity

	make test_notebook_singularity

	make test_imaging_qa_singularity

	make test_rcal_singularity

Generic RASCIL images

rascil-base and rascil-full

The base and full images are available at:

artefact.skao.int/rascil-base
artefact.skao.int/rascil-full

rascil-base does not have the RASCIL test data but is smaller in size.
However, for many of the tests and demonstrations the test data is needed, which are included in rascil-full.

To run RASCIL with your home directory available inside the image:

docker run -it --volume $HOME:$HOME artefact.skao.int/rascil-full:<version>

Now let’s run an example. First it simplifies using the container if we do not
try to write inside the container, and that’s why we mapped in our $HOME directory.
So to run the /rascil/examples/scripts/imaging.py script, we first change directory
to the name of the HOME directory, which is the same inside and outside the
container, and then give the full address of the script inside the container. This time
we will show the prompts from inside the container:

% docker run -p 8888:8888 -v $HOME:$HOME -it artefact.skao.int/rascil-full:1.0.0
rascil@d0c5fc9fc19d:/rascil$ cd /<your home directory>
rascil@d0c5fc9fc19d:/<your home directory>$ python3 /rascil/examples/scripts/imaging.py
...
rascil@d0c5fc9fc19d:/<your home directory>$ ls -l imaging*.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_dirty.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_psf.fits
-rw-r--r-- 1 rascil rascil 2102400 Feb 11 14:04 imaging_restored.fits

In this example, we change directory to an external location (my home directory in this case,
use yours instead), and then we run the script using the absolute path name inside the container.

RASCIL Notebooks

The docker image to use with RASCIL Jupyter Notebooks is:

artefact.skao.int/rascil-notebook

Run Jupyter Notebooks inside the container:

docker run -it -p 8888:8888 --volume $HOME:$HOME artefact.skao.int/rascil-notebook:1.0.0
cd /<your home directory>
jupyter notebook --no-browser --ip 0.0.0.0 /rascil/examples/notebooks/

The Juptyer server will start and output possible URLs to use:

[I 14:08:39.041 NotebookApp] Serving notebooks from local directory: /rascil/examples/notebooks
[I 14:08:39.041 NotebookApp] The Jupyter Notebook is running at:
[I 14:08:39.042 NotebookApp] http://d0c5fc9fc19d:8888/?token=f050f82ed0f8224e559c2bdd29d4ed0d65a116346bcb5653
[I 14:08:39.042 NotebookApp] or http://127.0.0.1:8888/?token=f050f82ed0f8224e559c2bdd29d4ed0d65a116346bcb5653
[I 14:08:39.042 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[W 14:08:39.045 NotebookApp] No web browser found: could not locate runnable browser.

The 127.0.0.1 is the one we want. Enter this address in your local browser. You should see
the standard Jupyter directory page.

Images of RASCIL applications

Continuum imaging Quality Assessment tool (a.k.a imaging_qa)

imaging_qa
finds compact sources in a continuum image and compares them
to the sources used in the simulation, thus revealing the quality of the imaging.

DOCKER

Pull the image:

docker pull artefact.skao.int/rascil-imaging-qa:<version>

Run the image:

docker run -v ${PWD}:/myData -e DOCKER_PATH=${PWD} \
 -e CLI_ARGS='--ingest_fitsname_restored /myData/my_restored.fits \
 --ingest_fitsname_residual /myData/my_residual.fits' \
 --rm artefact.skao.int/rascil-imaging-qa:1.0.0

Run it from the directory where your images you want to check are. The output files will
appear in the same directory. Update the CLI_ARGS string with the command line arguments
of the imaging_qa code as needed. DOCKER_PATH is used to extract the path
of the output files the app produced in your local machine, not in the docker container. This
is used for generating the output file index files.

SINGULARITY

Pull the image:

singularity pull rascil-imaging-qa.img docker://artefact.skao.int/rascil-imaging-qa:1.0.0

Run the image:

singularity run \
 --env CLI_ARGS='--ingest_fitsname_restored test-imaging-pipeline-dask_continuum_imaging_restored.fits \
 --ingest_fitsname_residual test-imaging-pipeline-dask_continuum_imaging_residual.fits' \
 rascil-imaging-qa.img

Run it from the directory where your images you want to check are. The output files will
appear in the same directory. If the singularity image you downloaded is in a different path,
point to that path in the above command. Update the CLI_ARGS string with the command line arguments
of the imaging qa code as needed.

Providing input arguments from a file

You may create a file that contains the input arguments for the app. Here is an example of it,
called args.txt:

::

–ingest_fitsname_restored=/myData/test-imaging-pipeline-dask_continuum_imaging_restored.fits
–ingest_fitsname_residual=/myData/test-imaging-pipeline-dask_continuum_imaging_residual.fits
–check_source=True
–plot_source=True

Make sure each line contains one argument, there is an equal sign between arg and its value,
and that there aren’t any trailing white spaces in the lines (and no empty lines).
The paths to images and other input files has to be the absolute path within the container.
Here, we use the DOCKER example of mounting our data into the /myData directory.

Then, calling docker run simplifies as:

docker run -v ${PWD}:/myData -e DOCKER_PATH=${PWD} -e CLI_ARGS='@/myData/args.txt' \
--rm artefact.skao.int/rascil-imaging-qa:1.0.0

Here, we assume that your custom args.txt file is also mounted together with the data into /myData.
Provide the absolute path to that file when your run the above command.

You can use an args file to run the singularity version with same principles, baring in mind
that singularity will automatically mount your filesystem into the container with paths
matching those on your system.

RCAL visibility receive consumer

The rascil_rcal directory [https://gitlab.com/ska-telescope/external/rascil-main/-/tree/master/docker/rascil-rcal]
contains the necessary extra code and Dockerfile
to build a docker image that can be used as a consumer for the
visibility receive script [https://developer.skao.int/projects/ska-sdp-script/en/latest/scripts/vis-receive.html].
This processing script can be deployed in the
SDP [https://developer.skao.int/projects/ska-sdp-integration/en/latest/index.html] system.
It receives data packets from the Correlator and Beam Former (CBF) or its emulator.

A prototype rcal-consumer has been added to the docker image.
It formats the received data packets into objects that can be passed into
a VisibilityBucket. A VisibilityBucket is filled up until full,
i.e. when it received all frequency channel data for a single time sample.
The resulting Visibility object is then passed to
RCAL [https://developer.skatelescope.org/projects/rascil/en/latest/apps/rascil_rcal.html],
which processes the data and produces the resulting gain solutions (and optional png images).

The docker image is available from the Central Artifact Repository
(tagged with the release version number):

artefact.skao.int/rascil-rcal:<version>

and from the GitLab container registry (tagged with latest
and updated upon merge to master):

registry.gitlab.com/ska-telescope/external/rascil/rascil-rcal:latest

Running RASCIL as a cluster

The following methods of running RASCIL as a cluster, will provide a set of
docker-based environments, which host a Dask scheduler, various Dask workers
(numbers can be customized), and a Jupyter lab notebook, which directly
connects to the scheduler.

Kubernetes

RASCIL can be run as a cluster in Kubernetes [https://kubernetes.io/] using
helm [https://helm.sh/] and kubectl [https://kubernetes.io/docs/reference/kubectl/overview/]
(you need to have these two installed). If you want to run it in a local developer environment
(e.g. a laptop), we recommend using Minikube [https://minikube.sigs.k8s.io/docs/start/].

A custom values.yaml files is provided in
/rascil/docker/kubernetes [https://gitlab.com/ska-telescope/external/rascil-main/-/blob/master/docker/kubernetes/values.yaml].
It is meant to be used with a custom Dask Helm chart maintained by SKA developers,
hosted in a GitLab repository [https://gitlab.com/ska-telescope/sdp/ska-sdp-helmdeploy-charts/-/tree/master/chart-repo].
The documentation and details of the SKA Dask Helm chart can be found at
https://developer.skao.int/projects/ska-sdp-helmdeploy-charts/en/latest/charts/dask.html.

You can modify the values.yaml file, if needed, e.g. you can change the number of
worker replicas, or the docker image used (e.g. the version that should be run).
If you don’t use a PersistentVolumeClaim, remove mounts and volume sections from the
jupyter and worker entries.
(See also /rascil/docker/kubernetes/README.md [https://gitlab.com/ska-telescope/external/rascil-main/-/tree/master/docker/kubernetes/README.md])

Start Minikube and add the helm repository:

helm repo add ska-helm https://gitlab.com/ska-telescope/sdp/ska-sdp-helmdeploy-charts/-/raw/master/chart-repo
helm repo update

cd into the /rascil/docker/kubernetes directory and install the RASCIL cluster:

helm install test ska-helm/dask -f values.yaml

Instructions on how to connect to the Dask dashboard and the Jupyter lab notebook are printed in the screen,
please follow those. You can follow the deployment process and access logs using kubectl or via
``k9s` <https://k9scli.io/>`_.

To uninstall the chart and clean out all pods, run:

helm uninstall test

Note: this will remove changes you might have made in the Jupyter notebooks.

Singularity

Singularity [https://sylabs.io/docs/] can be used to load and run the docker images:

singularity pull RASCIL-full.img docker://artefact.skao.int/rascil-full:1.0.0
singularity exec RASCIL-full.img python3 /rascil/examples/scripts/imaging.py

As in docker, don’t run from the /rascil/ directory.

Inside a SLURM file singularity can be used by prefacing dask and python commands with “singularity exec”. For example:

ssh $host singularity exec /home/<your-name>/workspace/RASCIL-full.img dask-scheduler --port=8786 &
ssh $host singularity exec /home/<your-name>/workspace/RASCIL-full.img dask-worker --host ${host} --nprocs 4 --nthreads 1 \
--memory-limit 100GB $scheduler:8786 &
CMD="singularity exec /home/<your-name>/workspace/RASCIL-full.img python3 ./cluster_test_ritoy.py ${scheduler}:8786 | tee ritoy.log"
eval $CMD

Customisability

The docker images described here are ones we have found useful. However,
if you have the RASCIL code tree installed then you can also make your own versions
working from these Dockerfiles.

Important updates

Starting with version 0.3.0, RASCIL is installed as a package into the docker images and
the repository is not cloned anymore. Hence, every python script
(except the ones in the examples directory) within the image has to be
called with the -m switch in the following format, when running within the docker container, e.g.:

python -m rascil.apps.rascil_advise <args>

RASCIL development

RASCIL is part of the SKA telescope organisation on GitLab https://gitlab.com/ska-telescope/external/rascil.git and development
is ongoing. We welcome merge requests submitted via GitLab. Guidelines and instructions for contributing to code and
documentation can be found here.

	Developing in RASCIL
	Process

	Design

	Submitting code

	Documenting RASCIL

	Build and Release process
	Automatic builds

	Releasing a new version

	Managing requirements
	Manually updating the requirements

	Process automation

	Background
	Core motivations

	Purpose

	Stakeholders

	Prior art

	Requirements

	Algorithms to be defined

	Testing

	Index

	Module Index

Developing in RASCIL

Use the SKA Python Coding Guidelines (http://developer.skatelescope.org/en/latest/development/python-codeguide.html).

We recommend using a tool to help ensure PEP 8 compliance. PyCharm does a good job at this and other code quality
checks.

Process

	Use git to make a local clone of the Github respository:

git clone https://gitlab.com/ska-telescope/rascil

	Make a branch. Use a descriptive name e.g. feature_improved_gridding, bugfix_issue_666

	Make whatever changes are needed, including documentation.

	Always add appropriate test code in the tests directory.

	Consider adding to the examples area.

	Push the branch to gitlab. It will then be automatically built and tested on gitlab: https://gitlab.com/ska-telescope/rascil/-/pipelines

	Once it builds correctly, submit a merge request.

Design

The RASCIL has been designed in line with the following principles:

	Data are held in Classes.

	The Data Classes correspond to familiar concepts in radio astronomy packages e.g. visibility, gaintable, image.

	The data members of the Data Classes are directly accessible by name e.g. .data, .name, .phasecentre.

	Direct access to the data members is envisaged.

	There are no methods attached to the data classes apart from variant constructors as needed.

	Standalone, stateless functions are used for all processing.

Additions and changes should adhere to these principles.

Submitting code

RASCIL is part of the SKA telescope organisation on GitLab. https://gitlab.com/ska-telescope/rascil.git.

We welcome merge requests submitted via GitLab. Please note that we use Black to keep the python
code style in good shape. The first step in the CI pipeline checks that the code complies with
black formatting style, and will fail if that is not the case.

Documenting RASCIL

	The primary documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html] (rst).

	We use Sphinx [http://www.sphinx-doc.org] to extract code documentation.

	We use the package sphinx_automodapi [https://sphinx-automodapi.readthedocs.io/] to build the API informatiom.

	For this to work, all of the code must be loadable into python. To facilitate this, we make use of the dreaded
from somewhere import *. This means that modules must use __all__ to only export those names that are
delivered by that module, as oopposed to the other names used in the module.

Build and Release process

Automatic builds

RASCIL is built automatically via a GitLab CI pipeline, which can be triggered by:

	on schedule

	commit to any branch

	merge/commit to master

	a tag is pushed to the repository

The following stages/jobs run, depending on the trigger mechanism:

	
	on schedule: the compile_requirements job runs, whose sole purpose is to regularly update the
	requirements files with the latest package versions. It also runs the .post stage.

	
	commit to a branch: it runs the linting and test stages, as well as the prepost and .post ones.
	The latter two creates and posts the ci_metrics data.

	
	merge/commit to master:
	
	linting, and test stages run

	build stage runs with the data and build_package jobs. The first builds and saves the RASCIL data
to GitLab, while the second builds the RASCIL python package for later consumption

	the publish stage’s docker_latest job runs, which builds, tags and publishes the latest docker images
to the Central Artefact Repository. This stage also runs the pages job, which publishes the
documentation and rebuilds the data.

	prepost and .post stages run

	
	commit tag: tagging the repository is manual (see below), which triggers the following parts of the pipeline
	
	linting stage

	build stage’s build_package job, which builds the RASCIL python package

	publish stage’s publish_to_car and docker_release jobs. The first publishes the python package,
while the second publishes the release-tagged (i.e. tagged with the package version) docker image
to the Central Artefact Repository

	.post stage

The above process makes sure that new code is automatically tested at
every point of the development process, and that the correct version
of the python package and the docker images are published with the
appropriate tag and at the appropriate time.

Releasing a new version

The release process:

	Overall based on: https://developer.skao.int/ and in particular https://developer.skao.int/en/latest/tools/software-package-release-procedure.html

	Use semantic versioning: https://semver.org

	Follow the packaging process in: https://packaging.python.org/tutorials/packaging-projects/

The release of a new package happens in two stages:

	a release tag is pushed to the repository (manually by a maintainer)

	the CI pipeline’s relevant stages publish the new package.

Note: while commits are allowed directly to master by maintainers of the repository,
this should not be used as an option, but rather update the code via Merge Requests.
This is only allowed for releasing a new version of the package.

Steps:

	Ensure that the current master builds on GitLab: https://gitlab.com/ska-telescope/external/rascil/-/pipelines

	Decide whether a release is warranted and what semantic version number it should be: https://semver.org

	Check if the documentation has been updated. If not, create a new branch, update the documentation,
create a merge request and merge that to master (after approval).

	Check out master and pull the latest version of it.

	Update CHANGELOG.md for the relevant changes in this release, putting newer description at the top.

	Commit the changes (do not push!)

	Bump the version using the Makefile:

make release-[patch||minor||major]

Note: bumpver needs to be installed.
This step automatically commits the new version tag to the repository.

	Review the pipeline build for success

	Create a new virtualenv and try the install by using pip3 install rascil:

virtualenv test_env
. test_env/bin/activate
pip3 install --index-url=https://artefact.skao.int/repository/pypi-all/simple rascil
python3
>>> import rascil

Managing requirements

RASCIL requirements are stored in three files:

	requirements.in Python requirements for the main code base

	requirements-test.in Python requirements to run the tests

	requirements-docs.in Python requirements to build the documentation

pip-compile is used to generate the corresponding .txt files. pip-compile resolves
all dependencies and saves them with their resolved versions in the .txt files.

This method is used to make sure we do not update requirements with every build,
but rather install them from the .txt files, where they are pinned. We also have to
make sure we regularly update these versions, by running pip-compile on the
.in files, which ideally do not contain version pins.

Manually updating the requirements

The Makefile of RASCIL contains three options to work with requirements
on your local machine:

	make requirements This will update the requirements in the .txt file, but will not install them

	make install_requirements This will install the existing requirements from the .txt files, but not update them

	make update_requirements This will first update all requirements, then install them (i.e it runs the first two commands)

The first and third commands change the .txt files, but do not commit the changes.
Still, it is worth running them from a branch, and not directly from master.

Process automation

Regularly updating the requirements manually is prone to be forgotten, which
can result in packages being out-of-date very quickly. Hence we set up a semi-automatic
process using the GitLab CI pipeline with a job run on a schedule.

The scheduled pipeline only runs one job, with the following steps:

	run make requirements

	check if there are changes compared to the existing remote files

	if there, create and check out a new branch

	commit and push the changes to the new branch

	create a Merge Request (MR) of the new branch into the source branch

	assign the MR

	if there aren’t any changes, do nothing

The tests are not run as part of this pipeline, because the MR created
at the end of will have the tests run as part of its own pipeline.

The assignee now has the responsibility of keeping track how the pipeline of this new MR does.
If it succeeds, then it should be merged to master. If it fails, then the failing
tests should be checked and the reasons for failure should be fixed. Packages should
not be pinned within the .in files, just because tests are failing, unless there
is a very good reason for it. Packages pinned in the .in files should be regularly
revisited and if possible, unpinned.

Background

This outlines the original motivation for the ARL. Some shift in emphasis has occurred as a result of the expansion of
RASCIL beyond the original purpose of a reference library.

Core motivations

	In many software packages, the only function specification is the application code itself. Although the underlying
algorithm may be published, the implementation tends to diverge over time, making this method of
documentation less effective. The algorithm reference library is designed to present imaging algorithms in a simple
Python-based form. This is so that the implemented functions can be seen and understood without resorting to
interpreting source code shaped by real-world concerns such as optimisations.

	Maintenance of the reference library over time is a choice for operations and we do not discuss it further here.

	Desire for simple test version: for example, scientists may wish to understand how the algorithm works and see it
tested in particular circumstances. Or a software developer wish to compare it to production code.

Purpose

	Documentation: The primary purpose of the library is to be easily understandable to people not familiar with radio
interferometry imaging. This means that the library should be broken down into a number of small, well-documented
functions. Aside from the code itself, these functions will be further explained by documentation as well as material
demonstrating its usage. Where such efforts would impact the clarity of the code itself it should be kept separate
(e.g. example notebooks).

	Testbed for experimentation: One purpose for the library is to facilitate experimentation with the algorithm
without touching the production code. Production code may be specialised due to the need for optimization, however
the reference implementation should avoid any assumptions not actually from the theory of interferometry imaging.

	Publication e.g. via github: All algorithms used in production code should be known and published. If the
algorithms are available separately from the production code then others can make use of the published code for small
projects or to start on an improved algorithm.

	Conduit for algorithms into SKA: The library can serve as a conduit for algorithms into the SKA production system.
A scientist can provide Python Version of an algorithm which then can be translated into optimized production code by
the SKA computer team.

	Algorithm unaffected by optimization: Production code is likely to be obscured by the need to optimize in various
ways. The algorithms in the library will avoid this as much as possible in order to remain clear and transparent.
Where algorithms need to be optimised in order to remain executable on typical hardware, we might opt for providing
multiple equivalent algorithm variants.

	Deliver algorithms for construction phase: The algorithm reference library Will also serve as a resource for the
delivery of algorithms to the construction phase. It is likely that much of the production code will be written by
people not intimately familiar with radio astronomy. Experience shows that such developers can often work from a
simple example of the algorithm.

	Reference for results: The library will also serve to provide reference results for the production code. This is
not entirely straightforward because the algorithms in both cases work in different contexts. Code that establishes
interoperability with external code will have to kept separate to not clutter the core implementation. This means
that we will not be able to guarantee comparability in all cases. In that case, it will be the responsibility other
developers of the production code to establish it - for example by using suitably reduced data sets.

Stakeholders

	SDP design team: The principal stakeholders for the algorithm reference library are the SDP Design Team. They will
benefit from having cleared descriptions of algorithms for all activities such as resource estimation, parameter
setting, definition of pipelines, and so on.

	SKA Project Scientists: The SKA project scientists must be able to understand the algorithms used in the pipelines.
This is essential if they are going to be assured that the processing is as desired, and relay that to the observers.

	External scientists: External scientists and observers using the telescope will benefit into ways. First, in
understanding the processing taking place in the pipelines, and second, being able to bring new algorithms for
deployment into the pipelines.

	SDP contractors: Depending upon the procurement model, SDP may be developed by a team without very much domain
knowledge. While expect the documentation of the entire system to be in good shape after CDR, the algorithms are the
very core of the system I must be communicated clearly and concisely. We can expect that any possible contractors
considering a bid would be reassured by the presence of algorithm reference library.

	Outreach: Finally, outreach may be a consumer of the library. For example, the library could be made available
to students at various levels to introduce them to astronomical data-processing concepts.

Prior art

LAPACK is an example of a library that mutated into a reference library. The original code was written in
straightforward FORTRAN but now many variants have been spawned including for example Versions optimized for
particular hardware, or using software scheduling techniques such as DAGs to arrange their internal processing. The
optimized variants must always agree with the reference code.

Requirements

	Minimal implementation: The implementation should be minimal making use of as few external libraries as possible.
Python is a good choice for the implementation because the associated libraries are powerful and well-defined.

	Use numpy whenever possible: Some form of numeric processing is inevitably necessary. There is also need for
efficient bulk data transfer between functions. For consistency, we choose to adopt the numpy library for both
algorithm and interface definition.

	Take algorithms with established provenance: While the purpose of the library is to define the algorithms clearly,
the algorithms themselves should have well-defined provenance. Acceptable forms of provenance include publication in a
peer-reviewed journal, publication in a well-defined memo series, and use in a well-defined production system. In
time we might expect that the algorithm reference library will itself provide sufficient provenance. This depends
upon the processes to maintain the library being stringently defined and applied.

	No optimization: No optimization should be performed on algorithms in the library if doing so obscures the
fundamentals of the algorithm. Runtime of the testsuite should not be consideration except in so far as it prevents
effective use.

	V&V begins here: Validation and verification of the pipeline processing begins in the algorithm reference library.
That means that it should be held to high standards of submission, testing, curation, and documentation.

	Single threaded: All algorithms should be single threaded unless multi-threading is absolutely required to achieve
acceptable performance. However, as distributed execution is going to be vital for the SDP, special take should be
taken to document and demonstrate parallelism opportunities.

	Memory limit: The memory used should be compatible with execution on a personal computer or laptop.

	How we maintain the requirements: Managing requirements

Algorithms to be defined

The following list gives an initial set of algorithms to be defined. It is more important to have the overall
framework in place expeditiously than to have each algorithm be state-of-the-art.

	Simulation

	Station/Antenna locations

	Illumination/Primary beam models

	Generation of visibility data

	Generation of gain tables

	Calibration

	Calibration solvers

	Stefcal

	Calibration application

	Gain interpolation

	Gain application

	Self-calibration

	Visibility plane

	Convolution kernels

	Standard

	W Projection

	AW Projection

	AWI Projection

	Degridding/Gridding

	2D

	W projection

	W slices

	W snapshots

	Preconditioning/Weighting

	Uniform

	Briggs

	Visibility plane to/from Image plane

	DFT

	Faceting

	Phase rotation

	Averaging/deaveraging

	Major cycles

	Image plane

	Source finding

	Source fitting

	Reprojection

	Interpolation

	MSClean minor cycle (for spectral line)

	MSMFS minor cycle (for continuum)

To test and demonstrate completeness, the main pipelines will be implemented.

Testing

	Testing philosophy: The essence of an algorithm reference library is that it should be used as the standard for
the structure and execution of a particular algorithm. This can only be done if the algorithm and the associated
code are tested exhaustively.

	We will use three ways of performing testing of the code

	Unit tests of all functions:

	Regression tests of the complete algorithm over a complete set of inputs.

	Code reviews (either single person or group read-throughs).

	Test suite via Jenkins: The algorithm reference library will therefore come with a complete set of unit tests and
regression tests. These should be run automatically, by, for example, a framework such as Jenkins, on any change to
ensure their errors are caught quickly and not compounded.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rascil	

 	
 	
 rascil.processing_components.calibration.iterators	

 	
 	
 rascil.processing_components.calibration.operations	

 	
 	
 rascil.processing_components.flagging.operations	

 	
 	
 rascil.processing_components.griddata.convolution_functions	

 	
 	
 rascil.processing_components.griddata.kernels	

 	
 	
 rascil.processing_components.image.gradients	

 	
 	
 rascil.processing_components.image.operations	

 	
 	
 rascil.processing_components.imaging.imaging_params	

 	
 	
 rascil.processing_components.imaging.primary_beams	

 	
 	
 rascil.processing_components.parameters	

 	
 	
 rascil.processing_components.simulation.atmospheric_screen	

 	
 	
 rascil.processing_components.simulation.noise	

 	
 	
 rascil.processing_components.simulation.pointing	

 	
 	
 rascil.processing_components.simulation.rfi	

 	
 	
 rascil.processing_components.simulation.simulation_helpers	

 	
 	
 rascil.processing_components.simulation.surface	

 	
 	
 rascil.processing_components.simulation.testing_support	

 	
 	
 rascil.processing_components.skycomponent.plot_skycomponent	

 	
 	
 rascil.processing_components.skymodel.operations	

 	
 	
 rascil.processing_components.util.compass_bearing	

 	
 	
 rascil.processing_components.util.installation_checks	

 	
 	
 rascil.processing_components.util.performance	

 	
 	
 rascil.processing_components.visibility.base	

 	
 	
 rascil.processing_components.visibility.visibility_fitting	

 	
 	
 rascil.workflows.rsexecute.calibration	

 	
 	
 rascil.workflows.rsexecute.execution_support	

 	
 	
 rascil.workflows.rsexecute.image	

 	
 	
 rascil.workflows.rsexecute.imaging	

 	
 	
 rascil.workflows.rsexecute.pipelines	

 	
 	
 rascil.workflows.rsexecute.simulation	

 	
 	
 rascil.workflows.rsexecute.skymodel	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

_

 	
 	_rsexecutebase (class in rascil.workflows.rsexecute.execution_support.rsexecute)

A

 	
 	add_image() (in module rascil.processing_components.image.operations)

 	addnoise_visibility() (in module rascil.processing_components.simulation.noise)

 	append_gaintable() (in module rascil.processing_components.calibration.operations)

 	
 	apply_bounding_box_convolutionfunction() (in module rascil.processing_components.griddata.convolution_functions)

 	apply_voltage_pattern_to_image() (in module rascil.processing_components.image.operations)

 	average_image_over_frequency() (in module rascil.processing_components.image.operations)

C

 	
 	calculate_averaged_correlation() (in module rascil.processing_components.simulation.rfi)

 	calculate_bounding_box_convolutionfunction() (in module rascil.processing_components.griddata.convolution_functions)

 	calculate_initial_compass_bearing() (in module rascil.processing_components.util.compass_bearing)

 	calculate_noise_visibility() (in module rascil.processing_components.simulation.noise)

 	calculate_sf_from_screen() (in module rascil.processing_components.simulation.atmospheric_screen)

 	calculate_skymodel_equivalent_image() (in module rascil.processing_components.skymodel.operations)

 	calculate_station_correlation_rfi() (in module rascil.processing_components.simulation.rfi)

 	calibrate_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.calibration)

 	check_data_directory() (in module rascil.processing_components.util.installation_checks)

 	client (_rsexecutebase property)

 	close() (_rsexecutebase method)

 	compute() (_rsexecutebase method)

 	continuum_imaging_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.pipelines)

 	convert_azelvp_to_radec() (in module rascil.processing_components.imaging.primary_beams)

 	corrupt_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_atmospheric_errors_gaintable_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_awterm_convolutionfunction() (in module rascil.processing_components.griddata.kernels)

 	create_box_convolutionfunction() (in module rascil.processing_components.griddata.kernels)

 	create_gaintable_from_rows() (in module rascil.processing_components.calibration.operations)

 	create_gaintable_from_screen() (in module rascil.processing_components.simulation.atmospheric_screen)

 	create_heterogeneous_gaintable_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_low_test_beam() (in module rascil.processing_components.imaging.primary_beams)

 	create_low_test_image_from_gleam() (in module rascil.processing_components.simulation.testing_support)

 	create_low_test_skycomponents_from_gleam() (in module rascil.processing_components.simulation.testing_support)

 	create_low_test_skymodel_from_gleam() (in module rascil.processing_components.simulation.testing_support)

 	
 	create_low_test_vp() (in module rascil.processing_components.imaging.primary_beams)

 	create_mid_allsky() (in module rascil.processing_components.imaging.primary_beams)

 	create_mid_simulation_components() (in module rascil.processing_components.simulation.simulation_helpers)

 	create_pb() (in module rascil.processing_components.imaging.primary_beams)

 	create_pb_generic() (in module rascil.processing_components.imaging.primary_beams)

 	create_pointing_errors_gaintable_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_polarisation_gaintable_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_pswf_convolutionfunction() (in module rascil.processing_components.griddata.kernels)

 	create_skymodel_from_skycomponents_gaintables() (in module rascil.processing_components.skymodel.operations)

 	create_standard_low_simulation_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_standard_mid_simulation_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_surface_errors_gaintable_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_test_image() (in module rascil.processing_components.simulation.testing_support)

 	create_test_image_from_s3() (in module rascil.processing_components.simulation.testing_support)

 	create_test_skycomponents_from_s3() (in module rascil.processing_components.simulation.testing_support)

 	create_unittest_components() (in module rascil.processing_components.simulation.testing_support)

 	create_unittest_model() (in module rascil.processing_components.simulation.testing_support)

 	create_visibility_from_ms() (in module rascil.processing_components.visibility.base)

 	create_visibility_from_uvfits() (in module rascil.processing_components.visibility.base)

 	create_voltage_pattern_gaintable_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	create_vp() (in module rascil.processing_components.imaging.primary_beams)

 	create_vp_generic() (in module rascil.processing_components.imaging.primary_beams)

 	create_vp_generic_numeric() (in module rascil.processing_components.imaging.primary_beams)

 	create_vpterm_convolutionfunction() (in module rascil.processing_components.griddata.kernels)

 	create_w_term_like() (in module rascil.processing_components.image.operations)

 	create_window() (in module rascil.processing_components.image.operations)

D

 	
 	deconvolve_list_channel_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	
 	deconvolve_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	deconvolve_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.skymodel)

E

 	
 	execute() (_rsexecutebase method)

 	expand_skymodel_by_skycomponents() (in module rascil.processing_components.skymodel.operations)

 	export_convolutionfunction_to_fits() (in module rascil.processing_components.griddata.convolution_functions)

 	
 	export_visibility_to_ms() (in module rascil.processing_components.visibility.base)

 	extend_visibility_to_ms() (in module rascil.processing_components.visibility.base)

 	extract_skycomponents_from_skymodel() (in module rascil.processing_components.skymodel.operations)

F

 	
 	fft_image_to_griddata_with_wcs() (in module rascil.processing_components.image.operations)

 	find_pb_width_null() (in module rascil.processing_components.simulation.simulation_helpers)

 	find_pierce_points() (in module rascil.processing_components.simulation.atmospheric_screen)

 	
 	find_times_above_elevation_limit() (in module rascil.processing_components.simulation.simulation_helpers)

 	fit_visibility() (in module rascil.processing_components.visibility.visibility_fitting)

 	flagging_aoflagger() (in module rascil.processing_components.flagging.operations)

 	flagging_visibility() (in module rascil.processing_components.flagging.operations)

G

 	
 	gaintable_plot() (in module rascil.processing_components.calibration.operations)

 	gaintable_timeslice_iter() (in module rascil.processing_components.calibration.iterators)

 	gather() (_rsexecutebase method)

 	generate_baselines() (in module rascil.processing_components.visibility.base)

 	get_dask_client() (in module rascil.workflows.rsexecute.execution_support)

 	
 	get_frequency_map() (in module rascil.processing_components.imaging.imaging_params)

 	get_parameter() (in module rascil.processing_components.parameters)

 	get_polarisation_map() (in module rascil.processing_components.imaging.imaging_params)

 	get_rowmap() (in module rascil.processing_components.imaging.imaging_params)

 	git_hash() (in module rascil.processing_components.util.performance)

 	grid_gaintable_to_screen() (in module rascil.processing_components.simulation.atmospheric_screen)

I

 	
 	ical_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.pipelines)

 	image_gather_channels_rsexecute() (in module rascil.workflows.rsexecute.image)

 	image_gradients() (in module rascil.processing_components.image.gradients)

 	image_rsexecute_map_workflow() (in module rascil.workflows.rsexecute.image)

 	import_image_from_fits() (in module rascil.processing_components.image.operations)

 	
 	ingest_unittest_visibility() (in module rascil.processing_components.simulation.testing_support)

 	init_statistics() (_rsexecutebase method)

 	initialize_skymodel_voronoi() (in module rascil.processing_components.skymodel.operations)

 	insert_unittest_errors() (in module rascil.processing_components.simulation.testing_support)

 	invert_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	invert_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.skymodel)

L

 	
 	list_ms() (in module rascil.processing_components.visibility.base)

M

 	
 	memusage() (_rsexecutebase method)

 	
 module

 	rascil.processing_components.calibration.iterators

 	rascil.processing_components.calibration.operations

 	rascil.processing_components.flagging.operations

 	rascil.processing_components.griddata.convolution_functions

 	rascil.processing_components.griddata.kernels

 	rascil.processing_components.image.gradients

 	rascil.processing_components.image.operations

 	rascil.processing_components.imaging.imaging_params

 	rascil.processing_components.imaging.primary_beams

 	rascil.processing_components.parameters

 	rascil.processing_components.simulation.atmospheric_screen

 	rascil.processing_components.simulation.noise

 	rascil.processing_components.simulation.pointing

 	rascil.processing_components.simulation.rfi

 	rascil.processing_components.simulation.simulation_helpers

 	rascil.processing_components.simulation.surface

 	rascil.processing_components.simulation.testing_support

 	rascil.processing_components.skycomponent.plot_skycomponent

 	rascil.processing_components.skymodel.operations

 	rascil.processing_components.util.compass_bearing

 	rascil.processing_components.util.installation_checks

 	rascil.processing_components.util.performance

 	rascil.processing_components.visibility.base

 	rascil.processing_components.visibility.visibility_fitting

 	rascil.workflows.rsexecute.calibration

 	rascil.workflows.rsexecute.execution_support

 	rascil.workflows.rsexecute.image

 	rascil.workflows.rsexecute.imaging

 	rascil.workflows.rsexecute.pipelines

 	rascil.workflows.rsexecute.simulation

 	rascil.workflows.rsexecute.skymodel

N

 	
 	normalise_vp() (in module rascil.processing_components.imaging.primary_beams)

O

 	
 	optimize() (_rsexecutebase method)

 	
 	optimizing (_rsexecutebase property)

P

 	
 	pad_image() (in module rascil.processing_components.image.operations)

 	partition_skymodel_by_flux() (in module rascil.processing_components.skymodel.operations)

 	performance_dask_configuration() (in module rascil.processing_components.util.performance)

 	performance_environment() (in module rascil.processing_components.util.performance)

 	performance_merge_memory() (in module rascil.processing_components.util.performance)

 	performance_qa_image() (in module rascil.processing_components.util.performance)

 	performance_read() (in module rascil.processing_components.util.performance)

 	performance_read_memory_data() (in module rascil.processing_components.util.performance)

 	performance_store_dict() (in module rascil.processing_components.util.performance)

 	persist() (_rsexecutebase method)

 	plot_azel() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_configuration() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_gaintable() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_gaintable_on_screen() (in module rascil.processing_components.simulation.atmospheric_screen)

 	plot_gaussian_beam_position() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_multifreq_spectral_index() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	
 	plot_pa() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_pointingtable() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_skycomponents_flux() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_skycomponents_flux_histogram() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_skycomponents_flux_ratio() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_skycomponents_position_distance() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_skycomponents_position_quiver() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_skycomponents_positions() (in module rascil.processing_components.skycomponent.plot_skycomponent)

 	plot_uvcoverage() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_uwcoverage() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_visibility() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_visibility_pol() (in module rascil.processing_components.simulation.simulation_helpers)

 	plot_vwcoverage() (in module rascil.processing_components.simulation.simulation_helpers)

 	polarisation_frame_from_wcs() (in module rascil.processing_components.image.operations)

 	predict_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	predict_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.skymodel)

R

 	
 	
 rascil.processing_components.calibration.iterators

 	module

 	
 rascil.processing_components.calibration.operations

 	module

 	
 rascil.processing_components.flagging.operations

 	module

 	
 rascil.processing_components.griddata.convolution_functions

 	module

 	
 rascil.processing_components.griddata.kernels

 	module

 	
 rascil.processing_components.image.gradients

 	module

 	
 rascil.processing_components.image.operations

 	module

 	
 rascil.processing_components.imaging.imaging_params

 	module

 	
 rascil.processing_components.imaging.primary_beams

 	module

 	
 rascil.processing_components.parameters

 	module

 	
 rascil.processing_components.simulation.atmospheric_screen

 	module

 	
 rascil.processing_components.simulation.noise

 	module

 	
 rascil.processing_components.simulation.pointing

 	module

 	
 rascil.processing_components.simulation.rfi

 	module

 	
 rascil.processing_components.simulation.simulation_helpers

 	module

 	
 rascil.processing_components.simulation.surface

 	module

 	
 rascil.processing_components.simulation.testing_support

 	module

 	
 rascil.processing_components.skycomponent.plot_skycomponent

 	module

 	
 	
 rascil.processing_components.skymodel.operations

 	module

 	
 rascil.processing_components.util.compass_bearing

 	module

 	
 rascil.processing_components.util.installation_checks

 	module

 	
 rascil.processing_components.util.performance

 	module

 	
 rascil.processing_components.visibility.base

 	module

 	
 rascil.processing_components.visibility.visibility_fitting

 	module

 	
 rascil.workflows.rsexecute.calibration

 	module

 	
 rascil.workflows.rsexecute.execution_support

 	module

 	
 rascil.workflows.rsexecute.image

 	module

 	
 rascil.workflows.rsexecute.imaging

 	module

 	
 rascil.workflows.rsexecute.pipelines

 	module

 	
 rascil.workflows.rsexecute.simulation

 	module

 	
 rascil.workflows.rsexecute.skymodel

 	module

 	rascil_data_path() (in module rascil.processing_components.parameters)

 	rascil_path() (in module rascil.processing_components.parameters)

 	remove_continuum_image() (in module rascil.processing_components.image.operations)

 	replicate_image() (in module rascil.processing_components.simulation.testing_support)

 	reproject_image() (in module rascil.processing_components.image.operations)

 	residual_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	restore_centre_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	restore_centre_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.skymodel)

 	restore_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	restore_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.skymodel)

 	run() (_rsexecutebase method)

S

 	
 	save_statistics() (_rsexecutebase method)

 	scale_and_rotate_image() (in module rascil.processing_components.image.operations)

 	scatter() (_rsexecutebase method)

 	set_client() (_rsexecutebase method)

 	set_pb_header() (in module rascil.processing_components.imaging.primary_beams)

 	show_components() (in module rascil.processing_components.image.operations)

 	show_image() (in module rascil.processing_components.image.operations)

 	show_skymodel() (in module rascil.processing_components.skymodel.operations)

 	simulate_gaintable() (in module rascil.processing_components.simulation.testing_support)

 	simulate_gaintable_from_pointingtable() (in module rascil.processing_components.simulation.pointing)

 	simulate_gaintable_from_voltage_pattern() (in module rascil.processing_components.simulation.surface)

 	
 	simulate_gaintable_from_zernikes() (in module rascil.processing_components.simulation.surface)

 	simulate_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.simulation)

 	simulate_pointingtable() (in module rascil.processing_components.simulation.pointing)

 	simulate_pointingtable_from_timeseries() (in module rascil.processing_components.simulation.pointing)

 	simulate_rfi_block_prop() (in module rascil.processing_components.simulation.rfi)

 	smooth_image() (in module rascil.processing_components.image.operations)

 	spectral_line_imaging_skymodel_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.pipelines)

 	sub_image() (in module rascil.processing_components.image.operations)

 	subtract_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	sum_images_rsexecute() (in module rascil.workflows.rsexecute.image)

 	sum_invert_results_rsexecute() (in module rascil.workflows.rsexecute.imaging)

 	sum_predict_results_rsexecute() (in module rascil.workflows.rsexecute.imaging)

T

 	
 	taper_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 	
 	threshold_list_rsexecute() (in module rascil.workflows.rsexecute.imaging)

 	type() (_rsexecutebase method)

U

 	
 	update_skymodel_from_gaintables() (in module rascil.processing_components.skymodel.operations)

 	update_skymodel_from_image() (in module rascil.processing_components.skymodel.operations)

 	
 	using_dask (_rsexecutebase property)

 	using_dlg (_rsexecutebase property)

W

 	
 	weight_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

Z

 	
 	zero_list_rsexecute_workflow() (in module rascil.workflows.rsexecute.imaging)

 _images/status_page.png

