

SKA Control Model Devices

	LowCbfMaster

	LowCbfSubarray

	LowCbfCapLogicalStation

	LowCbfCapSearchBeam

	LowCbfCapStationBeam

	LowCbfCapTimingBeam

Alveo FPGA Health Monitor

	AlveoDevice
	Usage

	Testing

	Continuous Integration

Low CBF FPGA Tango Device

	LowCbfFpga
	Simulation Mode

	Continuous Integration

	AlveoCL

	fpga_cmdline.py
	Command-Line Arguments

I2C Interface Device

	I2cDevice

Other related Tango devices are listed on
SKA Confluence - Perentie Tango Device Servers [https://confluence.skatelescope.org/display/SE/Perentie+Tango+Device+Servers]

Indices and tables

	Index

	Module Index

	Search Page

 These will interact with higher levels of the SKA control system (i.e. Low.CSP)
All require the SKA LMC base classes, which will be installed into the Docker image as part of the build process.

LowCbfMaster

LowCbfSubarray

LowCbfCapLogicalStation

LowCbfCapSearchBeam

LowCbfCapStationBeam

LowCbfCapTimingBeam

AlveoDevice

AlveoDevice is a Tango device server for monitoring health status of Xilinx Alveo FPGA accelerator cards.

Usage

The pciPath property must be populated for each Tango device instance.

Use the full path to the sysfs location for user monitoring of the card.
This will probably end in 00.1, and will contain further subdirectories such as xmc.u.<number> and rom.u.0.

For example, in our test server we use:
/sys/devices/pci0000:ae/0000:ae:00.0/0000:af:00.1

Note there is also a ‘management’ device (ends in 00.0, contains xmc.m.<number>),
it probably doesn’t matter which you use but we have not tested this.

Testing

To test the software without using a real FPGA, you can use a copy of the sysfs files.
There is one such set in test-harness/alveo_sysfs.

If you’re running the device on a full Tango system,
the pciPath parameter can be set to any filesystem location that is convenient to work with.

If you’re only running a DeviceTestContext (or similar),
you can set the path on the module itself, e.g.

from ska.low_cbf_mcs import AlveoDevice
AlveoDevice.pciPath = '/build/alveo_sysfs'

We have tested this using a Xilinx Alveo U50 Data Center Acclerator Card [https://www.xilinx.com/products/boards-and-kits/alveo/u50.html].
We expect it to work with other cards in the range, but modifications to the monitored
parameters are likely to be required to match the sensors present on each card.

Continuous Integration

The CI tests in this repo use DeviceTestContext and do not require a full Tango system.
The files in test-harness/alveo_sysfs are used, which have known values that are hard-coded into the test script.

We had problems with the tests running very slowly and often failing,
so as a temporary workaround we only run one test in the CI pipeline.
There’s a block of commented-out pytest parameters that should be reinstated once this issue is resolved.
See tests/test_alveo.py.

LowCbfFpga

LowCbfFpga is a Tango device server for monitoring and control of registers in the Low.CBF signal processing FPGAs.
It’s a lightweight wrapper around an AlveoCL “core” object, which communicates to the Alveo FPGA modules using PyOpenCL.

Simulation Mode

At present, the simulationMode attribute is read-only, and reflects whether the AlveoCL core failed to be instantiated.
That is, “False” implies a connection to an FPGA.

Upon failure to create its AlveoCL core, the Tango device will create a dummy core.
The dummy core handles reads & writes of attributes, obviously using the PC memory and no interface to any FPGA.

Continuous Integration

The current CI tests of this device use DeviceTestContext and do not require a full Tango system.

AlveoCL

Instatiating an AlveoCL object requires arguments for firmware, logger, memory, and card number.

	Firmware is the path to an xclbin file.

	Logger should hopefully be compatible with a standard python logger - it just needs to be an object with .debug, .info, etc methods.

	Memories have a size in bytes, and a boolean “shared” flag (False means the memory is FPGA-only, True means shared with the PC).

Memory config must match the parameters of the firmware kernel.

Example:

from ska.low_cbf_mcs.alveo_cl import AlveoCL, MemConfig
memories = [
 MemConfig(1024 * 4, True), # 1024 words for register interchange
 MemConfig(1 << 30, True), # 1GiB
 MemConfig(128 << 20, True), # 128MiB
]
fpga = AlveoCL(
 "/app/my_kernel.xclbin", device.logger, mem_config=memories
)

Registers system.args_magic_number and system.fpga_uptime are created at object instantiation, but fpgamap is not parsed until start is called.
(At present, a hard-coded filter selects only the ‘system’ and ‘packetiser’ peripherals)

fpga.start()

Reading & writing to FPGA registers is then performed using nested array syntax. Reads return an FpgaRegister, which contains value, time, etc.

read example
print("Packets transmitted", fpga["packetiser"]["eth100g_tx_total_packets"].value)

write example
fpga["packetiser"]["psr_ctrl_vector"] = 3

fpga_cmdline.py

A command-line (i.e. non-Tango) demonstration of OpenCL FPGA communications.

Command-Line Arguments

-m <size><k|M|G><s|i>

Configure memory buffers.
Numeric size, followed by scale (k=1024, M=k*1024, G=M*1024), then ‘s’ for shared between FPGA and host or ‘i’ for internal to FPGA.
Multiple buffers may be specified, seperated by spaces or colons.

-f <path>

Path to the firmware (xclbin) file

-d <card number>

FPGA register addresses are hard-coded at present.

e.g.

python3 src/ska/low_cbf_mcs/fpga_cmdline.py -m "1Gs 128Ms" -f Packetiser_Dec_2020/current_u50LV.xclbin -d 8

Press H in the CLI for further help.

I2cDevice

For interfacing with the Gemini FPGA card backplane.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Indices and tables

 		
 LowCbfMaster

 		
 LowCbfSubarray

 		
 LowCbfCapLogicalStation

 		
 LowCbfCapSearchBeam

 		
 LowCbfCapStationBeam

 		
 LowCbfCapTimingBeam

 		
 AlveoDevice

 		
 Usage

 		
 Testing

 		
 Continuous Integration

 		
 LowCbfFpga

 		
 Simulation Mode

 		
 Continuous Integration

 		
 AlveoCL

 		
 fpga_cmdline.py

 		
 Command-Line Arguments

 		
 I2cDevice

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

