

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

v0.1.0

	using asyncio to manage concurrent calls to dspsr

v0.1.1

	Using yaml.load(input, loader=yaml.SafeLoader) instead of bare
yaml.load(input) call

	Added some logging messages to test methods

	Fixed bug where tests wouldn’t run if the specified name didn’t begin
with test_

	output archives and text files are prepended with the name of the respective
test

v0.2.0

	Output files go to products subdirectory instead of base directory.

	Using TOML instead of YAML for test configuration.

	Changed expected order in test configuration to test method name, dspsr parameters, test file path.

	Default log level for partialize is ERROR, even in verbose mode.

v0.3.0

	refactored utility code into dspsr_test subdirectory.

	fixed set_dspsr_executables.py

v0.4.0

	renamed test.config.toml to verify.config.toml

	added unit tests in test/

	added follow function that just runs a bunch of coroutines
in sequence.

	added run_dspsr_with_dump function.

v0.4.1

	uses DSPSR_TEST_DATA_DIR to find test data files

v0.5.0

	no longer using Python’s unittest to generate test cases. Instead, I’m
generating cases by hand and running them with tqdm for a nice loading bar.
Alternatively, tests can be run all at once using asyncio.gather. This might
be marginally fast than running them in sequence.

	Adding verify/run_dspsr that just runs a single build of dspsr against a
bunch of test cases. This doesn’t do any checking to see if anything is
correct, rather it just runs code and generates archives.

	verify/run_dspsr can run the same dspsr command against the same file with
different parameters, ultimately comparing the output archives.

	verify/run_dspsr automatically creates PNG plots of DSPSR runs.

	Added dspsr_test/common.py which defines a set of a common configuration and
running tools for creating verification tests. This also defines an interface
by which to create tests.

	verify/run_dspsr.py can run with two (lists of) inputs with a single command
line option. This will psrdiff the archives of each run.

	verify/run_dspsr.py can run with two (lists of) inputs with a set of command
line options. This will run dspsr with each set of inputs and each set of
command line options. This will psrdiff the archives of each run.

v0.6.0

	the util.run_dspsr function can now be used to handle DSPSR calls that
create multiple output files.

	added some DSPSR API scripts in sandbox/

v0.6.1

	Fixed issue with util.run_dspsr where it would not behave correctly with
single archive output files.

	Fixed issue where API tests were tied to a specific dataset revision.

v0.7.0

	Added Dockerfile that allows for running get_gDMCP_data.py script in a docker container.

	Added automatic docker deploy in gitlab-ci.yml.

DSPSR tests

This repo contains several DSPSR verification tests.

Installing

poetry install

Configuring

Update verify.config.toml with different test cases and DSPSR builds.

Configuring verify_dspsr_builds

Each entry in the verify_dspsr_builds.params section of the verfiy.config.toml
configuration file has the following contents:

[
 <<test case identifier>>,
 <<DSPSR command line options>>
 <<test file name>>
]

For example:

[
 "default", # the name of the test case
 "-E pulsar.par -P t2pred.dat -F 128:D -T 1", # parameters that are passed to DSPSR
 "1644-4559.dada" # test file name
],

Adding more entries will create more test cases.

Configuring run_dspsr

The run_dspsr verification tool can be used to automate a few scenarios:

	Running DSPSR with a given set of command line options against a given
file. These tests don’t check for correctness, rather they just determine if
DSPSR will run at all.

	Running DSPSR with two sets of command line options, using the same data
file.

	Running DSPSR with one sets of command line options, using two different
data files.

	Running DSPSR with two sets of command line options, using two data files.

For cases 2-4, the test cases automatically use psrdiff to compare the output
archive of each DSPSR run.

The following is an example of snippet of a possible verify.config.toml file
that will create a test case for each of the preceding scenarios:

scenario 1
[[run_dspsr.params]]
name = "F_128D"
options = ["-F 128:D -T 0.05"]
files = ["1024/2018-09-01-09:52:55_0000000000000000.000000.dada"]

scenario 2
[[run_dspsr.params]]
name = "sk_1024_rfi"
options = [
 "-F 128:D -skz -skzm 128 -skzs 3 -U 10240 -T 0.05",
 "-F 128:D -U 10240 -T 0.05"
]
files = ["1024/2018-09-01-09:52:55_0000000000000000.000000.dada"]

scenario 3
[[run_dspsr.params]]
name = "sk_1024"
options = [
 "-F 128:D -U 10240 -T 0.05"
]
files = [
 "1024/2018-09-01-09:52:55_0000000000000000.000000.dada",
 "1024/2018-09-01-09:52:55_0000010267656192.000000.dada"
]

scenario 4
[[run_dspsr.params]]
name = "sk_1024_rfi_no_rfi"
options = [
 "-F 128:D -skz -skzm 128 -skzs 3 -U 10240 -T 0.05",
 "-F 128:D -U 10240 -T 0.05"
]
files = [
 "1024/2018-09-01-09:52:55_0000000000000000.000000.dada",
 "1024/2018-09-01-09:52:55_0000010267656192.000000.dada"
]

Running

To test DSPSR builds against one another:

poetry run python -m verify.verify_dspsr_builds

To run DSPSR with varying parameters on the same dataset (this does not
check to see if any output is correct):

poetry run python -m verify.run_dspsr

Note that using the -c command line option with run_dspsr may lead to
undefined behavior.

Downloading gDMCP data

If dspsr-test is installed with poetry, simply run

poetry run python get_gDMCP_data.py -d ./data

This assumes that the GDMCP_API_KEY environment variable has been set.

docker run -v ./data:/home/data -e GDMCP_API_KEY="<gdmcp-api-key>" -t dshaff/dspsr-test:latest get_gDMCP_data.py -d /home/data/

Testing

poetry run python -m test.test_util

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

