Spookd - virtual device plugin for

Kubernetes
Release 0.2.2

Alexander Hill <alexander.hill@csiro.au>

Jul 18, 2022

CONTENTS

1 Spookd - virtual device plugin for Kubernetes 3
1.1 Introduction e e e e e e e e e 3
1.2 Deployment e 3
1.3 Device configuration e e e e e e 4
14 Development i v e e e e e e e e e e e e e e e e 5
15 TODO . . . e e 8
2 Indices and tables 9

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

This project implements a Device Plugin for Kubernetes that allows arbitrary extended resources to be advertised and
allocated based on a configuration file on the filesystem or in a ConfigMap.

This documentation is generated from the project README.md.

The project’s home is on GitLab at https://gitlab.com/ska-telescope/ska-ser-k8s-spookd.

CONTENTS 1

https://gitlab.com/ska-telescope/ska-ser-k8s-spookd

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

2 CONTENTS

CHAPTER
ONE

SPOOKD - VIRTUAL DEVICE PLUGIN FOR KUBERNETES

Spookd is a Kubernetes device plugin that lets you add virtual devices to your nodes. These devices can be requested
and allocated to pods in your cluster in the same way that real host-local devices are. Virtual devices can be used to
represent e.g. devices that are accessed over a network.

This device plugin draws inspiration from several others, notably
* https://github.com/hustcat/k8s-rdma-device-plugin
* https://github.com/Xilinx/FPGA _as_a_Service/tree/master/k8s-fpga-device-plugin
The precursor by Piers Harding can be found at https://gitlab.com/piersharding/k8s-ghost-device-plugin.

1.1 Introduction

Writing a Kubernetes device plugin allows you to add custom (“extended’) resources to your cluster, which pods can
request in the same way they do the built-in resources like cpu and memory. Most device plugins are concerned with
managing devices present on the host, like GPUs or FPGAs - the plugin inspects the available hardware on the host
and reports it to the Kubelet, and then Kubernetes handles scheduling and allocation of the resource to pods that have
requested it.

Instead of dealing with real hardware available on the host, Spookd simply reads a configuration file (stored in a
ConfigMap) and advertises the extended resources defined in it. These resources don’t have to be network devices, or
represent any physical device at all - they can represent any abstract resource your pods need mutually exclusive access
to.

At SKAO we use this plugin to coordinate exclusive access to network-connected devices in our clusters.

1.2 Deployment

1.2.1 Using the Helm chart

First, if you haven’t already, add the SKAO Helm repository. The following command will add it with the name skao:

$ helm repo add skao https://artefact.skao.int/repository/helm-internal

Next, create yourself an empty values file:

$ touch myvalues.yaml

https://github.com/kubernetes/design-proposals-archive/blob/main/resource-management/device-plugin.md#protocol-overview

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

Edit myvalues.yaml, adding a deviceMapping key with your initial device configuration (described in detail in the
section below), plus any other values you wish to override in the Helm chart. Read the comments in the Chart’s
values.yaml for details on what you can override.

Then install the latest version of the Helm chart, using your values file:

$ helm install --values myvalues.yaml spookd-device-plugin skao/ska-ser-k8s-spookd --
—version 0.2.2

This will install Spookd as a Helm release named spookd-device-plugin.

1.2.2 From the Helm chart in a local checkout of this git repository

Follow the instructions above, but skip the helm repo add ... step, and for the install step, run

$ helm install --values myvalues.yaml spookd-device-plugin ./charts/ska-ser-k8s-spookd

1.2.3 From the example Kubernetes manifest in a local checkout of this git reposi-
tory

If you don’t want to use Helm, you can deploy Spookd by editing the sample manifest spookd-device-plugin.yaml
in this repository and deploying with

$ kubectl apply -f spookd-device-plugin.yaml

This manifest is mainly meant to be used as a shortcut during development, so there are a couple of things to bear in
mind:

* This manifest is designed for testing during development, so the image in the pod spec is localhost/
spookd-device-plugin:latest. If you want to deploy a production version, update this to artefact.skao.
int/ska-ser-k8s-spookd:0.2.2.

* The imagePullPolicy is set to Always. You may wish to change this to IfNotPresent.

* A sample ConfigMap is defined inline in this manifest. Edit it to suit your needs before deploying.

1.3 Device configuration

Device configuration is defined in YAML and stored in a ConfigMap or file. The device plugin watches for configuration
changes, and updates the set of advertised extended resources accordingly.

The configuration consists of a list of mappings, where each mapping defines a set of hostnames and a set of devices
those hosts can access. Hosts and devices may appear in multiple mappings.

Devices are uniquely identified by resourcename and instanceid keys, and may optionally include env - a map of
environment variables that will be set in containers that are allocated the device. If a device appears more than once,
its env must be identical or the configuration is considered invalid.

Example:

deviceMapping:
- hosts:
- labl-hostl

(continues on next page)

4 Chapter 1. Spookd - virtual device plugin for Kubernetes

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

(continued from previous page)

- labl-host2
devices:

- resourceName: skao.

instanceID: "0001"
env:
IP: 10.0.10.215

- resourceName: skao.

instanceID: "0002"
env:
IP: 10.0.10.218

- resourceName: skao.

instanceID: "0001"

env:
IP: 10.10.10.80
- hosts:
- lab2-hostl
devices:

- resourceName: skao.

instanceID: "0003"
env:
IP: 10.0.10.85
- resourceName: skao
instanceID: "0002"
env:
IP: 10.0.10.80

int/oscilloscope

int/oscilloscope

int/signal-generator

int/oscilloscope

.int/signal-generator

1.4 Development

The following instructions assume you have a minikube environment available, and the hostname of your minikube

node is “minikube”.

1.4.1 Build

1. run eval $(minikube podman-env) (or eval $(minikube docker-env) if you're using Docker). This
ensures that the image is built by your minikube’s podman/docker daemon and the resulting image is immediately
available in your minikube Kubernetes context.

2. Run make docker.

This builds the project, creates an OCI image and tags it as localhost/spookd-device-plugin:latest.
There is no need to run make build first - this happens as part of the OCI multi-stage build.

1.4. Development

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

1.4.2 Deploy the sample manifest

Run the following command to deploy Spookd in your cluster’s default namespace:

$ kubectl apply -f spookd-device-plugin.yaml -n spookd

You should see the following:

serviceaccount/spookd-device-plugin created

configmap/spookd-device-plugin created
role.rbac.authorization.k8s.io/spookd-device-plugin:watch-configmaps created
rolebinding.rbac.authorization.k8s.io/spookd-device-plugin created
daemonset.apps/spookd-device-plugin created

Verify that the pod is running with:

$ kubectl get pods -1 app.kubernetes.io/name=spookd-device-plugin
NAME READY STATUS RESTARTS AGE
spookd-device-plugin-fw41l9 1/1 Running 0 45s

And view logs:

$ kubectl logs -1 app.kubernetes.io/name=spookd-device-plugin
time="2022-07-05T15:02:52Z" level=debug msg="0x4000138d00: Creating server for: example.
—.com/widget"

time="2022-07-05T15:02:52Z" level=info msg="0x400013d180: Starting to serve on /var/lib/
—kubelet/device-plugins/spookd-examplecom_widget.sock"

time="2022-07-05T15:02:52Z" level=info msg="0x400013d180: Registered device plugin with.
—Kubelet"

time="2022-07-05T15:02:52Z" level=debug msg="0x4000138d00: Creating server for: example.
—com/thingamajig"

time="2022-07-05T15:02:52Z" level=info msg="0x4000330780: Starting to serve on /var/lib/
—kubelet/device-plugins/spookd-examplecom_thingamajig.sock"

time="2022-07-05T15:02:52Z" level=info msg="0x4000330780: Registered device plugin with.
—Kubelet"

time="2022-07-05T15:02:52Z" level=debug msg="0x4000138d00: Updating server for: example.
—.com/widget"

time="2022-07-05T15:02:52Z" level=debug msg="0x4000138d00: Updating server for: example.
—com/thingamajig"

time="2022-07-05T15:02:52Z" level=debug msg="0x400013d180: reporting 1 example.com/
—widget devices"

time="2022-07-05T15:02:52Z" level=debug msg="0x4000330780: reporting 2 example.com/
—thingamajig devices"

Look at the resources advertised on your nodes with:

$ kubectl get nodes -o=jsonpath="{.items[*]['metadata.name', 'status.capacity']}{'\n'}"
minikube {"cpu":"2","ephemeral-storage":"51893228Ki","example.com/thingamajig":"1",

—"example.com/widget":"1", "hugepages-1Gi":"0", "hugepages-2Mi":"0", "hugepages-32Mi":"0",
—"hugepages-64Ki":"0", "memory" :"1954688Ki", "pods":"110"}

6 Chapter 1. Spookd - virtual device plugin for Kubernetes

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

1.4.3 Deploy the test consumer Deployment

spookd-test-deployment.yaml is a manifest describing a Deployment that calls for two replicas of a pod which requires
one example.com/widget, and one example.com/thingamajig. Deploy it:

$ kubectl apply -f spookd-test-deployment.yaml
deployment.apps/spookd-test created
$ kubectl get pods -1 app.kubernetes.io/name=spookd-test

NAME READY STATUS RESTARTS AGE
spookd-test-5cd4f987b8-c426x 0/1 Pending 0 2m34s
spookd-test-5cd4f987b8-hhh94 1/1 Running 0 2m34s

However, our test node only has one example.com/widget, and so one pod will remain in the Pending state as
expected.

$ kubectl get pods spookd-test-5cd4f987b8-c426x -o jsonpath='{.status.conditions[0].
—.message}'

0/1 nodes are available: 1 Insufficient example.com/widget. preemption: 0/1 nodes are.
—~available: 1 No preemption victims found for incoming pod.

Let’s examine the environment variables made available by Spookd in the running pod:

$ kubectl exec spookd-test-5cd4f987b8-hhh94 -- env | sort
EXAMPLECOM_THINGAMAJIG_DEVO_ID=A1234
EXAMPLECOM_THINGAMAJIG_DEVO_TYPE=example.com/thingamajig
EXAMPLECOM_THINGAMAJIG_ID=A1234
EXAMPLECOM_THINGAMAJIG_NUM_DEVICES=1
EXAMPLECOM_THINGAMAJIG_TYPE=example.com/thingamajig
EXAMPLECOM_WIDGET_DEV®_ID=0001
EXAMPLECOM_WIDGET_DEV®_IP=192.168.0.200
EXAMPLECOM_WIDGET_DEVO_PORT=12345
EXAMPLECOM_WIDGET_DEVO_TYPE=example.com/widget
EXAMPLECOM_WIDGET_ID=0001
EXAMPLECOM_WIDGET_IP=192.168.0.200
EXAMPLECOM_WIDGET_NUM_DEVICES=1
EXAMPLECOM_WIDGET_PORT=12345
EXAMPLECOM_WIDGET_TYPE=example.com/widget

HOME=/root

HOSTNAME=spookd-test-5cd4f987b8-hhh94
KUBERNETES_PORT=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_SERVICE_HOST=10.96.0.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
PATH=/usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin
TERM=xterm

1.4. Development 7

Spookd - virtual device plugin for Kubernetes, Release 0.2.2

1.5 TODO

» Handle exclusive access between different hosts via CRD and field management

¢ Clean up resource types with qty 0

8 Chapter 1. Spookd - virtual device plugin for Kubernetes

https://kubernetes.io/docs/reference/using-api/server-side-apply/#field-management

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

	Spookd - virtual device plugin for Kubernetes
	Introduction
	Deployment
	Using the Helm chart
	From the Helm chart in a local checkout of this git repository
	From the example Kubernetes manifest in a local checkout of this git repository

	Device configuration
	Development
	Build
	Deploy the sample manifest
	Deploy the test consumer Deployment

	TODO

	Indices and tables

