
developer.skatelescope.org
Documentation

Release 0.1.0-beta

Marco Bartolini

Nov 10, 2022

HOME

1 Requirements 3

2 Install 5

3 Testing 7

4 Code analysis 9

5 Writing documentation 11

6 Development 13
6.1 PyCharm . 13

7 TMLite Server 15
7.1 Starting the Server . 15
7.2 Accessing The Server . 15
7.3 The Model Structure . 16
7.4 Storage backends . 16
7.5 Example API tasks . 17
7.6 Extending the Model and Server . 17

8 Public API 19
8.1 Models . 19
8.2 Server functions . 19
8.3 Client . 19

9 TMLite Documentation 21

i

ii

developer.skatelescope.org Documentation, Release 0.1.0-beta

Documentation Status

There is likely to be a wider implementation of a more capable telescope model - however for the purposes of quick SDP
development this is fastAPI based server - which will deliver JSON formatted products - backed by a JSON formatted
telescope model.

I have decided to isolate the server, the model and the model maintainer into three objects. The server will be this
repository. The physical form of the model will be a JSON structure, The creation and maintenance of the JSON
structure is provided by a third product.

HOME 1

https://ska-telescope-sdp-tmlite-server.readthedocs.io/en/latest/?badge=latest

developer.skatelescope.org Documentation, Release 0.1.0-beta

2 HOME

CHAPTER

ONE

REQUIREMENTS

The system used for development needs to have Python 3 and pip installed.

3

developer.skatelescope.org Documentation, Release 0.1.0-beta

4 Chapter 1. Requirements

CHAPTER

TWO

INSTALL

Always use a virtual environment. Pipenv is now Python’s officially recommended method, but we are not using it
for installing requirements when building on the CI Pipeline. You are encouraged to use your preferred environment
isolation (i.e. pip, conda or pipenv while developing locally.

For working with Pipenv, follow these steps at the project root:

First, ensure that ~/.local/bin is in your PATH with:

> echo $PATH

In case ~/.local/bin is not part of your PATH variable, under Linux add it with:

> export PATH=~/.local/bin:$PATH

or the equivalent in your particular OS.

Then proceed to install pipenv and the required environment packages:

> pip install pipenv # if you don't have pipenv already installed on your system
> pipenv install
> pipenv shell

You will now be inside a pipenv shell with your virtual environment ready.

Use exit to exit the pipenv environment.

5

https://pipenv.readthedocs.io/en/latest/

developer.skatelescope.org Documentation, Release 0.1.0-beta

6 Chapter 2. Install

CHAPTER

THREE

TESTING

• Put tests into the tests folder

• Use PyTest as the testing framework

– Reference: PyTest introduction

• Run tests with python setup.py test

– Configure PyTest in setup.py and setup.cfg

• Running the test creates the htmlcov folder

– Inside this folder a rundown of the issues found will be accessible using the index.html file

• All the tests should pass before merging the code

7

https://pytest.org
http://pythontesting.net/framework/pytest/pytest-introduction/

developer.skatelescope.org Documentation, Release 0.1.0-beta

8 Chapter 3. Testing

CHAPTER

FOUR

CODE ANALYSIS

• Use Pylint as the code analysis framework

• By default it uses the PEP8 style guide

• Use the provided code-analysis.sh script in order to run the code analysis in the module and tests

• Code analysis should be run by calling pylint ska_python_skeleton. All pertaining options reside under
the .pylintrc file.

• Code analysis should only raise document related warnings (i.e. #FIXME comments) before merging the code

9

https://www.pylint.org
https://www.python.org/dev/peps/pep-0008/

developer.skatelescope.org Documentation, Release 0.1.0-beta

10 Chapter 4. Code analysis

CHAPTER

FIVE

WRITING DOCUMENTATION

• The documentation generator for this project is derived from SKA’s SKA Developer Portal repository

• The documentation can be edited under ./docs/src

• If you want to include only your README.md file, create a symbolic link inside the ./docs/src directory if
the existing one does not work:

$ cd docs/src
$ ln -s ../../README.md README.md

• In order to build the documentation for this specific project, execute the following under ./docs:

$ make html

• The documentation can then be consulted by opening the file ./docs/build/html/index.html

11

https://github.com/ska-telescope/developer.skatelescope.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

12 Chapter 5. Writing documentation

CHAPTER

SIX

DEVELOPMENT

6.1 PyCharm

As this project uses a src folder structure, under Preferences > Project Structure, the src folder needs to be marked as
“Sources”. That will allow the interpreter to be aware of the package from folders like tests that are outside of src.
When adding Run/Debug configurations, make sure “Add content roots to PYTHONPATH” and “Add source roots to
PYTHONPATH” are checked.

Todo:

• Insert todo’s here

13

https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure

developer.skatelescope.org Documentation, Release 0.1.0-beta

14 Chapter 6. Development

CHAPTER

SEVEN

TMLITE SERVER

This server uses fastAPI to serve the contents of the prototype_model.json file via a web interface.

7.1 Starting the Server

I would suggest that new users check out the documentation for fastAPI as this will clearly demonstrate how this is set
up.

The simplest way to launch the current server is via docker-compose. Running the following: docker-compose up
--build

This will execute the following docker-compose which will start a container running the server and exposing port 80
of the container:

version: '2'
services:

tmlite:
build:
context: .
dockerfile: Dockerfile
container_name: ska-sdp-tmlite-server
volumes:

- "/var/run/docker.sock:/var/run/docker.sock"
hostname: localhost
expose:

- "80"
ports:

- "80:80/tcp"
command: ["uvicorn", "ska.tmlite.main:app", "--host", "0.0.0.0", "--port", "80"]

7.2 Accessing The Server

One of the advantages of fastAPI is that it self documents. So once you have the server running simply connect to it:

> docker-compose up --build
.....
> ska-sdp-tmlite-server | INFO: Uvicorn running on http://0.0.0.0:80 (Press CTRL+C␣
→˓to quit)

15

https://fastapi.tiangolo.com

developer.skatelescope.org Documentation, Release 0.1.0-beta

Assuming you kept the same port exposure open your browser at http://localhost:80/docs

For example the request to obtain the full model is:

>curl -X 'GET' 'http://localhost/model/current' -H 'accept: application/json'

And this will return the full model

7.3 The Model Structure

On server construction there are two models created a “default” model and a “current” model. The default model
should not be altered but the current one can be changed in part. Also new models can be added and altered at will.
WHen the server shuts down all alterations are lost. THis scheme is not for the long term storage of models - but the
short term access of them.

7.4 Storage backends

The initial Telescope Model data is loaded from one of the supported storage backends. The storage to be used is
selected by setting the STORAGE_BACKEND environment variable to the name of one of the supported storage backends.

Currently only a GitLab storage backend is supported,

7.4.1 gitlab backend

The gitlab storage backend loads a Telescope Model file from the SKA SDP TMLite data repository repository. Please
read its documentation, as it explains how data is organised and presented. Note that like this project, the TMLite data
repository is also currently designed to work in a read-only fashion from the standpoint of this TMLite server.

A set of environment variables control this process, all of which must be prefixed with STORAGE_BACKEND__:

• CLONE_DIRECTORY is the local directory holding the clone of the repository, defaults to <OS-temp-dir>/
tmplite_gitlab_repository.

• PRIVATE_TOKEN, JOB_TOKEN and OAUTH_TOKEN, if defined, are used for authentication against GitLab.

• MODEL_PATH is the file to be loaded from the repository clone as the Telescope Model, it defaults to
prototype_model.json.

• REPOSITORY_REF indicates the git reference (SHA, branch, tag) to retrieve when cloning the repository. If not
given, the default repository branch is used.

If the CLONE_DIRECTORY doesn’t exist then a clone of the repository is created in that location. If it exists no further
action occurs. Note that this implies that this backend can be used to point to an existing directory/file in the local
filesystem containing a valid Telescope Model, even if that directory is not a git repository.

At the moment, and as mentioned earlier, all editions are ephemeral: once the server shuts down they are all lost.

16 Chapter 7. TMLite Server

https://developer.skao.int/projects/ska-sdp-tmlite-repository/en/latest/index.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

7.5 Example API tasks

Probably the simplest way to access this is via the python requests module - but of course for the GET methods you
can even use a browser if you want.

7.5.1 Getting the full default model

A simple python api:

> import request
> url = "http://localhost/model/default/"
> response = requests.get(url)

7.5.2 Getting the current model

Is as simple as changing the URL:

> url = "http://localhost/model/current/"

But there are a number of methods coded up for you to get subsets of the model and even change things for example:

> url = "http://localhost/current/ska1_low/update_antennas"
> mccs = {"station_ids": ['0','1','2','3']}
> response = requests.post(url,json=mccs)

This will update the current model to only include antennas from the list.

7.6 Extending the Model and Server

This is a minimal hello world implementation - You should have enough information to extend the server to respond
more smartly to requests and return slices through the model for example.

7.5. Example API tasks 17

developer.skatelescope.org Documentation, Release 0.1.0-beta

18 Chapter 7. TMLite Server

CHAPTER

EIGHT

PUBLIC API

The FastAPI is documented internally at http://localhost:80/docs once the server is running. The functions and
classes currently implemented in the model are:

8.1 Models

8.2 Server functions

8.3 Client

19

developer.skatelescope.org Documentation, Release 0.1.0-beta

20 Chapter 8. Public API

CHAPTER

NINE

TMLITE DOCUMENTATION

These are all the packages, functions and scripts that form part of the project.

• TMLite Server

21

	Requirements
	Install
	Testing
	Code analysis
	Writing documentation
	Development
	PyCharm

	TMLite Server
	Starting the Server
	Accessing The Server
	The Model Structure
	Storage backends
	gitlab backend

	Example API tasks
	Getting the full default model
	Getting the current model

	Extending the Model and Server

	Public API
	Models
	Server functions
	Client

	TMLite Documentation

