
SKA SDP Continuum Imaging Pipelines
Release 0.0.0

Nov 18, 2021

CONTENTS

1 Quickstart 3
1.1 Build sphinx documentation locally . 3

i

ii

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

Repository created for SDP continuum imaging pipeline scripts developed in PI9 for SP-1331.

This repository is intended to serve two purposes. Firstly as a demonstration of how the pipelines can be successfully
run. And a respository of pipelines as applied to the continuum imaging testcases as developed by SDP.

The way this works is that the pipelines are being added as tasks in the gitlab continuum integration. How they are
added is essentially up to the groups. It is intended that all pipelines be documented.

It is intended that as more complex testcases and pipelines are developed they will be added to the CI. There is a
limitation in that the pipelines and tests need to be scoped to a size that can run on the machines dedicated as runners.
However it is also possible to add pipelines and testcases to this repository that are not ran as part of CI.

CONTENTS 1

https://jira.skatelescope.org/browse/SP-1331

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

2 CONTENTS

CHAPTER

ONE

QUICKSTART

1.1 Build sphinx documentation locally

pip install -r doc-requirements.txt
make docs

This will generate sphinx html documentation in the docs/_build folder.

1.1.1 Continuous Integration in GitLab

Note: Some knowledge of the GitLab CI configuration is assumed

The gitlab-ci.yml CI controller

It is proposed that we add pipelines as stages in the gitlab-ci, thereby utilising the test infrastructure to perform basic
pipeline tests.

The CI file is organised in stages:

image: ubuntu:18.04

stages:
- build-all
- build-yanda
- test
- deploy

before_script:
- echo "Before script section"
- echo "For example you might run an update here or install a build dependency"
- echo "Or perhaps you might print out some debugging details"

after_script:
- echo "After script section"
- echo "For example you might do some cleanup here"

build-all:
stage: build-all
script:

(continues on next page)

3

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

(continued from previous page)

- echo "Common build for everyone"
- mkdir ${CI_PROJECT_DIR}/products

artifacts:
paths:
- ${CI_PROJECT_DIR}/products

build-yanda:
stage: build-yanda
script:

- echo "Do your build here"
- mkdir ${CI_PROJECT_DIR}/products/yandasoft

artifacts:
paths:
- ${CI_PROJECT_DIR}/products/yandasoft

test-yandasoft:
image: registry.gitlab.com/askapsdp/all_yandasoft
stage: test
script:

- echo "The YANDASoft test"
- apt-get update -y
- apt-get install -y ca-certificates curl --no-install-recommends
- apt-get install -y default-jdk
- cd pipelines/yandasoft/nextflow
- curl -s https://get.nextflow.io | bash
- ./nextflow run ./functest.nf
- mv products/* ${CI_PROJECT_DIR}/products/yandasoft/

artifacts:
paths:
- ${CI_PROJECT_DIR}/products/yandasoft

test-rascil:
image:
name: $CAR_OCI_REGISTRY_HOST/rascil-full:0.3.0
entrypoint: [""]
stage: test
before_script:

- echo "The RASCIL test"
- apt-get update
- apt-get -y install default-jdk
- cd pipelines/rascil/nextflow
- curl -s https://get.nextflow.io | bash

script:
- ./nextflow run rascil_imager.nf
- mv products/* ${CI_PROJECT_DIR}/products/rascil/

artifacts:
paths:

- ${CI_PROJECT_DIR}/products/rascil
expire_in: 1 week

test-other:
stage: test
script:

- echo "Do another parallel test here"
- echo "For example run a lint test"

deploy1:
(continues on next page)

4 Chapter 1. Quickstart

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

(continued from previous page)

stage: deploy
script:

- echo "Do your deploy here"

Create Gitlab CI badges from CI metrics
https://developer.skatelescope.org/en/latest/tools/continuousintegration.html
→˓#automated-collection-of-ci-health-metrics-as-part-of-the-ci-pipeline
include:
- project: 'ska-telescope/templates-repository'

file: 'gitlab-ci/includes/post_step.yml'

You can see in this example current as of March 2021. I have included a test pipeline for the YANDASoft imager.
The test is performed inside a nextflow pipeline - it is proposed that this CI is extended by other pipelines. It is further
possible that more tests can be performed upon the products archived by the pipelines.

Note: The NextFlow method is detailed in the YANDASoft pipeline. But this not meant to be prescriptive. This is
simply one way of presenting a containerised workflow

1.1.2 The Installed Pipelines

YANDASoft

The YANDASoft pipelines are presented in a number of ways. The simplest is a NextFlow pipeline. NextFlow is a
simple computational pipeline described here <https://www.nextflow.io>

An individual pipeline is presented for each test. And a common configuration is presented for all tests.

The Functional Test

This test is a simple imaging test it contains a 1Jy point source slightly off the image phase centre. The simulation was
generated with the ASKAP simulation tools and is just included here as a demonstration of a simple pipeline.

The Input Data

The measurement set for it is included in ./data/functest.ms it is a small, 8 channel ASKAP simulation.

The Configuration File

This deployment of YANDASoft is controlled by a configuration file. All of the aspects of the processing are controlled
by this file. This particular implementation is going to image, deconvolve and restore the input simulation.

The configuration file for this processing is included in ./configs/functest.in:

Cimager.dataset = [functest.ms]
Cimager.imagetype = casa
Cimager.memorybuffers = true
Cimager.barycentre = false
Cimager.nchanpercore = 8
Cimager.combinechannels = true

(continues on next page)

1.1. Build sphinx documentation locally 5

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

(continued from previous page)

Cimager.Images.Names = [image.cont]
Cimager.Images.shape = [128,128]
Cimager.Images.cellsize = [5arcsec, 5arcsec]
Cimager.visweights = MFS
Cimager.visweights.MFS.reffreq = 1.1e+09
Cimager.Images.image.cont.frequency = [1.1e+09,1.1e+09]
Cimager.Images.image.cont.nterms = 2
Cimager.Images.image.cont.nchan = 1
Cimager.nworkergroups = 3
Cimager.sensitivityimage = true

Cimager.gridder = WProject
Cimager.gridder.WProject.wmax = 20000
Cimager.gridder.WProject.nwplanes = 51
Cimager.gridder.WProject.oversample = 8
Cimager.gridder.WProject.maxsupport = 1024
Cimager.gridder.WProject.cutoff = 0.001
Cimager.gridder.WProject.variablesupport = true
Cimager.gridder.WProject.offsetsupport = true

Cimager.ncycles = 6
Cimager.Images.writeAtMajorCycle = true

Use a multiscale Clean solver
Cimager.solver = Clean
Cimager.solver.Clean.solutiontype = MAXCHISQ
Cimager.solver.Clean.decoupled = True
Cimager.solver.Clean.algorithm = BasisfunctionMFS
Cimager.solver.Clean.scales = [0]
Cimager.solver.Clean.niter = 10000
Cimager.solver.Clean.gain = 0.3
Cimager.solver.Clean.logevery = 1000
Cimager.threshold.minorcycle = [40%,2mJy,0.18mJy]
Cimager.threshold.majorcycle = 10mJy

Cimager.solver.Clean.verbose = false

Cimager.preconditioner.preservecf = true
Cimager.preconditioner.Names = [Wiener]
Cimager.preconditioner.Wiener.robustness = 2.0

Cimager.restore = true
Cimager.restore.beam = fit

I will not go through all the configuration options here they are described at
<https://yandasoft.readthedocs.io/en/latest/calim/imager.html>.

The important things to note are:

Cimager.visweights = MFS

Which denotes that we are processing using Multi Frequency Synthesis. Which in this case is a representation of the
bhaviour of the flux as a fuctional of frequency that is characterised by a Taylor decomposition:

Cimager.Images.image.cont.nterms = 2

Our Taylor decomposition will output 2 Taylor-frequency terms. It should be noted that my input simulation has no

6 Chapter 1. Quickstart

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

frequency dependence - so the terms higher than 0 will be empty.

The Taylor term decomposition requires that the same input data be reweighted for each term. This is massively
parallel by frequency until deconvolution so is performed in parallel by:

Cimager.nworkergroups = 3

3 Worker groups. All the gridding and imaging will be distributed into 3 groups. Which means the jobs is now
configured to run as a 4 (four) rank MPI job.

The gridding is pure W-projection as the image has only a very simple source close to the phase centre the imaging is
very robust to this. But for completeness the parameters are included.

Other points to note are the solver is a basis function solver - but only a 0-basis is being used. A Wiener filter is being
used instead of tradional weighting.

Running the Test in CI

This test has been packaged into NextFlow so that the CI will run relatively simply. The relevant section of the
gitlab-ci.yml is

1 test-yandasoft:
2 image: registry.gitlab.com/askapsdp/all_yandasoft
3 stage: test
4 script:
5 - echo "The YANDASoft test"
6 - apt-get update -y
7 - apt-get install -y ca-certificates curl --no-install-recommends
8 - apt-get install -y default-jdk
9 - cd pipelines/yandasoft/nextflow

10 - curl -s https://get.nextflow.io | bash
11 - ./nextflow run ./functest.nf
12 - mv products/* ${CI_PROJECT_DIR}/products/yandasoft/
13 artifacts:
14 paths:
15 - ${CI_PROJECT_DIR}/products/yandasoft

Note:

1. Just the name of the test

2. The image containing the yandasoft code. At the moment this is a very fat image. Some technical debt has been
incurred creating this and a thinner one is under developement

3. The gitlab CI stage

4. Script block

5. Update apt

6. Install curl

7. Install java which is a requirement for nextflow

8. Install nextflow

9. Run the pipeline

10. Copy the pipeline products into the output directory

11. Artifacts declaration - all artifacts once declared are available to subsequent gitlab stages

1.1. Build sphinx documentation locally 7

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

12. Expose the following paths as artifacts. These will then be published by the gitlab CI.

The NextFlow Pipeline for the Test

NextFlow is a relatively simple mechanism to deploy workflows on multiple platforms. This is the nextflow script that
runs the pipeline.

1 #!/usr/bin/env nextflow
2

3 config = Channel.fromPath('../configs/functest.in')
4 datafile = Channel.fromPath('../data/functest.ms')
5

6 process image {
7 input:
8 path 'functest.in' from config
9 path 'functest.ms' from datafile

10 output:
11 file 'image.cont.taylor.0.restored' into restored_image, testing_image
12 file 'residual.cont.taylor.0' into residual_image
13 script:
14 """
15 mpirun -np 4 --allow-run-as-root imager -c ./functest.in
16 """
17 }
18

19 process examine {
20 input:
21 file image from testing_image
22 output:
23 file 'results.txt' into results
24 script:
25 """
26 imgstat $image > results.txt
27 """
28 }
29

30 process publish {
31

32 publishDir 'products',mode: 'copy', overwrite: true
33 input:
34 file image from restored_image
35 file resid from residual_image
36 output:
37 file 'functest.tar.gz'
38 script:
39 """
40 tar -cvf functest.tar $image $resid
41 gzip functest.tar
42 """
43 }
44

45 process test {
46 input:
47 path 'results.txt' from results
48

(continues on next page)

8 Chapter 1. Quickstart

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

(continued from previous page)

49 shell:
50 """
51 cat results.txt | head -1 | awk '{ if (\$1 < 0.99 || \$1 > 1.01) exit(1); else

→˓exit(0) }'
52 """
53 }

Although this is not meant as a nextflow tutorial the above pretty much covers all you would need to know. An
important concept to grasp is that each process is completely independent and can be deployed separately - but the
direction of the flow is controlled by the channels. You can see that above the test process needs the results
channel which is generated by the examine process, which itself needs the test_image channel from the image
process. Nextflow will deploy these processes as directed by its configuration. In this case the configuration defaults
to a local executor which is the gitlab-ci runner. The runner is using the image as declared in the CI hence all the
scripts are ran inside that container.

The image process

1 process image {
2 input:
3 path 'functest.in' from config
4 path 'functest.ms' from datafile
5 output:
6 file 'image.cont.taylor.0.restored' into restored_image, testing_image
7 file 'residual.cont.taylor.0' into residual_image
8 script:
9 """

10 mpirun -np 4 --allow-run-as-root imager -c ./functest.in
11 """
12 }

Note:

2. The input declarations - this block defines the input channels.

3. Bring the config file into this space.

4. Bring the datafile into this space.

5. The output channels need to be declared.

6. Usually there is a one to one mapping. If you need an output to be supplied to more than one consumer you have to
say so.

8. All processes need a script block.

10. Actually run the job as an mpi job over 4 cores (3 for the groups and 1 for the deconvolution). The –allow-run-as-
root is required as I have not created a default user for this container.

1.1. Build sphinx documentation locally 9

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

The examine process

1 process examine {
2 input:
3 file image from testing_image
4 output:
5 file 'results.txt' into results
6 script:
7 """
8 imgstat $image > results.txt
9 """

10 }

Note: 3. Get the image from the testing_image channel of the image process 5. Put the results into a results
channel. 6. Run the imgstat tool from YANDASoft to generate some image statistics including the position of the
brightest point in the map

The test process

This parses the results file to see if the brightest point really is a 1 Jy source. This is a simple pass/fail metric for this
pipeline. It is not paticularly clever - but will abort the pipeline and thus the CI job if the brightest point is not 1Jy.

1 process test {
2 input:
3 path 'results.txt' from results
4 shell:
5 """
6 cat results.txt | head -1 | awk '{ if (\$1 < 0.99 || \$1 > 1.01) exit(1); else

→˓exit(0) }'
7 """
8 }

Note:

4. Note I use shell instead of script I found I havd to do this to escape the awk fields correctly

The publish process

Ok I need to get the products out of the NextFlow environment and into the gitlab-ci environment for publishing and
this is done by my publish process.

1 process publish {
2 publishDir 'products',mode: 'copy', overwrite: true
3 input:
4 file image from restored_image
5 file resid from residual_image
6 output:
7 file 'functest.tar.gz'
8 script:
9 """

(continues on next page)

10 Chapter 1. Quickstart

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

(continued from previous page)

10 tar -cvf functest.tar $image $resid
11 gzip functest.tar
12 """
13 }

Note:

2. This important concept here is that the publishDir is a path generated relative to where nextflow was run. THe
mode is copy as by default it generates links overwrite is set to true. But in the CI this is likeloy only to be
run once per build anyway.

If you look back at the Running the Test in CI you will see that we move the products into an artifacts directory of the
CI run.

The output image

By the way the output of this pipeline is a not-to-interesting point source:

Running the Test Locally

You can probably see from the CI that running locally should be easy. Afterall you could just follow the same steps.
But that would require all the pulling of images and the mounting of directories surely NextFlow can make that
easier. Yes it can. You can set nextflow to use a docker executor locally.

The nextflow config looks like this - it has multiple sections - this is section I use for my local runs

1 if ("$HOSTNAME".startsWith("miranda")) {
2 process {
3 container = 'registry.gitlab.com/askapsdp/all_yandasoft'
4 }
5 docker {
6 enabled = true
7 }
8 }

It’s pretty much that simple. If I am on my local machine, then use the same container as in the CI and switch on the
docker executor. I need the conditional as I have other deployment locations.

I have included a config.local in the repo. So the following should work on any machine with docker and
nextflow installed

> git clone https://gitlab.com/ska-telescope/sdp/ska-sdp-continuum-imaging-pipelines.
→˓git
> cd ska-sdp-continuum-imaging-pipelines/pipelines/yandasoft/nextflow
> nextflow -C local.cfg run functest.nf

1.1. Build sphinx documentation locally 11

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

Running the RASCIL Checker

There is another nextflow pipeline that runs the funtional test. yanda-rascil.nf the difference being that the
rascil image checker is ran and the test is performed by that image.

process checker {
container 'artefact.skao.int/rascil-full:0.3.0'
publishDir 'products', mode: 'copy', overwrite: true
errorStrategy 'finish'
input:

path 'image.cont.taylor.0.restored.fits' from restored_image
path 'residual.cont.taylor.0.fits' from residual_image
path 'yanda-rascil-checker.in' from checker_config

output:
path 'image*'
path 'residual*'
path 'index*'

script:
"""
python /rascil/rascil/apps/ci_checker_main.py @yanda-rascil-checker.in
"""

}

The important difference is that we are now specifying a different image for this process. This pipeline requires
docker-in-docker to run. And the test in the CI file is set up slightly differently If a test stage wishes to invoke docker
- then the image for the stage needs to deploy with a running docker daemon.

test-yandasoft-w-rascil-w-docker:
when: manual
image: docker:19.03.12
services:

- docker:19.03.12-dind
stage: test
script:

- echo "The YANDASoft test- with a RASCIL checker - in docker"
- apk update
- apk add ca-certificates curl bash openjdk8
- cd pipelines/yandasoft/nextflow
- curl -s https://get.nextflow.io | bash
- ./nextflow run ./yanda-rascil.nf
- mv products/* ${CI_PROJECT_DIR}/products/yandasoft/

artifacts:
paths:
- ${CI_PROJECT_DIR}/products/yandasoft

You can see it is almost the same - the docker image uses a different package manager. One issue is that the image
cache is temporary -so the full image must be pulled each time the test is run. This means the test can take a long time
to run. Hence this is a manual test.

12 Chapter 1. Quickstart

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

The TST-001 simulation

We have also added a cut-down version of the TST-001 simulation as detailed in the continuum imaging pipeline
confluence pages https://confluence.skatelescope.org/x/voKZBw

We have made this an optional test that can be deployed from the gitlab pipeline page (e.g) https://gitlab.com/
ska-telescope/sdp/ska-sdp-continuum-imaging-pipelines/-/pipelines

The Input Data

The input data here is the gaussian_beams simple simulation and is large (10GB) and it pulled from the google storage
using the following steps in the gitlab_ci.

1 - echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] http://packages.cloud.
→˓google.com/apt cloud-sdk main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.
→˓list && curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key --
→˓keyring /usr/share/keyrings/cloud.google.gpg add - && apt-get update -y && apt-get
→˓install google-cloud-sdk -y

2 - cd ${CI_PROJECT_DIR}/pipelines/yandasoft/data
3 - gsutil -m cp -r "gs://ska1-simulation-data/ska1-low/continuum_sims_SP-1331/

→˓gaussian_beams.ms" .

The NextFlow Pipeline for TST-001

This is identical to the functional test example all we are changing is the input filenames and the Configuration

The Imaging Configuration

The major difference between this imaging task and the functional test is the size of the input dataset. There are 100
channels and a large SKA-LOW layout. In order to process this on a system the size of a gitlab_ci made a number of
simplifications to the Imaging.

We have restricted the longest baseline to 10km:

Cimager.MaxUV = 10000

We have likewise restricted the largest w-term to 3km:

Cimager.gridder.WProject.wmax = 3000

We have restricted the FOV to 4.5 degrees by reducing the resolution to 10 arc-seconds and the number of pixels to
1536:

Cimager.Images.shape = [1536,1536]
Cimager.Images.cellsize = [10.27arcsec, 10.27arcsec]

These are not ideal imaging parameters and have only been used to allow the imaging to fit on a typical runner.

1.1. Build sphinx documentation locally 13

https://confluence.skatelescope.org/x/voKZBw
https://gitlab.com/ska-telescope/sdp/ska-sdp-continuum-imaging-pipelines/-/pipelines
https://gitlab.com/ska-telescope/sdp/ska-sdp-continuum-imaging-pipelines/-/pipelines

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

Running the TST-001 Test Locally

This is exactly the same as the functional test - though it will take much longer

> git clone https://gitlab.com/ska-telescope/sdp/ska-sdp-continuum-imaging-pipelines.
→˓git
> cd ska-sdp-continuum-imaging-pipelines/pipelines/yandasoft/nextflow
> nextflow -C local.cfg run tst-001-low.nf

RASCIL

The RASCIL pipelines are presented as shell scripts and input files. Instead of the shell scripts, once can also use
Nextflow to run the pipeline (see below).

RASCIL runs within the following docker image:

artefact.skao.int/rascil-full:0.3.0

Newer docker images are being released, and the published version tags can be found at https://artefact.skao.int/
#browse/browse:docker-all:v2%2Frascil-full%2Ftags

Note: from version 0.3.0 and newer, RASCIL is installed as a package into the docker images and the repository is
not cloned anymore. Hence, every python script within the image has to be called with the -m switch in the following
format, e.g.:

python -m rascil.apps.rascil_advise <args>

The Functional Test

For comparison purposes, the RASCIL pipelines run the same functional test as the yandasoft ones.

The input data

The measurement set for it is included in pipelines/yandasoft/data/functest.ms. It is a small, 8 channel ASKAP simu-
lation.

Running the test locally

Bash scripts

The provided bash scripts need to be run within the rascil-full docker container, or RASCIL has to be installed
on the local machine.

pipelines/rascil/bash/functest.sh provides an example flow of RASCIL pipelines. It starts with running rascil_advise
to provide imaging parameters for the input CASA MeasurementSet. Followed by rascil_imager to create FITS image
files. And finally it runs imaging_qa, which produces important statistics and diagnostics plots to verify the “correct-
ness” of the restored and residual images generated by rascil_imager.

Each commandline app uses configuration files stored in pipelines/rascil/config/. Alternatively, one can run the
commands by providing the input parameters together with the CLI command. Examples of such runs are
pipelines/rascil/bash/rascil-imager.sh and pipelines/rascil/bash/imaging_qa.sh. A detailed explanation of the CLI
arguments for each RASCIL application can be found at the links above.

14 Chapter 1. Quickstart

https://ska-telescope.gitlab.io/external/rascil/
https://artefact.skao.int/#browse/browse:docker-all:v2%2Frascil-full%2Ftags
https://artefact.skao.int/#browse/browse:docker-all:v2%2Frascil-full%2Ftags
https://ska-telescope.gitlab.io/external/rascil/RASCIL_install.html
https://ska-telescope.gitlab.io/external/rascil/apps/rascil_advise.html
https://ska-telescope.gitlab.io/external/rascil/apps/rascil_imager.html
https://ska-telescope.gitlab.io/external/rascil/apps/imaging_qa.html

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

Each bash script assumes that RASCIL is installed as a package into your environment.

Nextflow pipeline

The full imaging and qa pipeline can be deployed via Nextflow. If you have RASCIL installed locally, you should be
able to just run the workflow from pipelines/rascil/nextflow (assuming Nextflow is also installed in this directory):

nextflow run rascil_imager.nf

The RASCIL Nextflow pipeline does not use a custom Nextflow configuration file by default, there is no need to set up
a local.cfg file and pass that into the command like the Yandasoft pipeline does. If you need to change to configuration,
you can update the provided nextflow.config file, which is automatically used by Nextflow.

The outputs of the imaging_qa tool will be saved in pipelines/rascil/nextflow/products. A more detailed explanation
of the Nextflow processes can be found below.

Running the test in GitLab CI

The test-rascil job in .gitlab-ci.yml runs the Nextflow version of the RASCIL pipelines using the test Measure-
mentSet.

It pulls the most recent version of the rascil-full docker image (0.3.0 at time of writing). It installs JAVA, a pre-
requisite of Nextflow, and installs Nextflow within the pipelines/racil/nextflow directory. After running the pipelines,
it copies the outputs of the imaging_qa tool into the artifact directory.

The Nextflow pipeline

Nextflow-related files can be found in pipelines/rascil/nextflow. nextflow.config contains the basic configuration of
executors. Currently, it only contains one option, to run Nextflow with singularity, however, this is a conditional
setting, and by default, it will run locally in the local environment. When run in GitLab CI, it uses the docker image
provided by the CI job as its local environment.

The more important file is rascil_imager.nf, which contains the Nextflow process definitions. It runs three processes:

- imager
- qa
- test

The imager process

The inputs for this process are provided through the datafile and imager_config channels. The first one con-
tains the input MeasurementSet, while the second contains the configuration file for rascil_imager. The configuration
file can be found at pipelines/rascil/config/rascil-imager.in.

The output files of the imager, used by the second process, are the restored and residual images, both passed into
another two channel, in order to communicate them to the second process.

1.1. Build sphinx documentation locally 15

https://www.nextflow.io/docs/latest/basic.html
https://www.nextflow.io/docs/latest/getstarted.html#installation

SKA SDP Continuum Imaging Pipelines, Release 0.0.0

The qa process

The qa process takes as an input the restored and residual FITS images produced by the first (imager) pro-
cess, as well as an input configuration file for the imaging_qa code. The configuration file can be found at
pipelines/rascil/config/imaging_qa.in.

It outputs various figures, CSV files, HDF files, and log files, all of which are transferred into the products directory,
generated on the fly in the directory where Nextflow was executed from. These final products can then be inspected to
draw conclusions on the correctness of the imaging pipeline.

The test process

This process uses the restored image from the qa process and performs a simple check. rascil_image_check is
called with --stat max --min 0.495 --max 0.505 parameters. With this set up, we test and verify that the
brightest source in the restored image is 1 Jy. The definition of the stokes I value in RASCIL is I=0.5*(XX+YY),
hence the min-max range is not around 1, but around 0.5. This process matches the test stage of the YANDASoft
Nextflow pipeline.

(See yandasoft for the Nextflow pipeline set up for YANDASoft, which explains their processes in more detail, some
of which also applies to the RASCIL Nextflow pipeline.)

16 Chapter 1. Quickstart

https://ska-telescope.gitlab.io/external/rascil/apps/rascil_image_check.html

	Quickstart
	Build sphinx documentation locally

