

PSS LMC documentation

PSS.LMC Description:

	PSS.LMC Description

PSS.LMC API

	Project’s API

PSS.LMC Description

The LMC schema emerging during the bridging phase will be progressively implemented
inside the MVP prototype. It will comprise some emulation of main functions.
It is foreseen also a minimal PSS pipeline functionality. At the moment Controller
and Subarray devices are not implemented.
We aim to collect the basic interaction modes with Cheetah in order to be able to
control it by a simple device driver to be implemented in PI8.
Basic information on Cheetah control has been reported in the AT4-362 documentation.
The Cheetah pipeline is a single executable which contains either the CPU and the
CUDA version of PSS and SPS pipeline. It is a CLI program and can be controlled either
by a configuration program and by command line switches.
The command line switch overrides the configuration file ones.
The proposed design interact with Cheetah by means of command line and, in future,
by OS level signals. We will implement the basic Cheetah pipeline
(To became the CTRL module as defined in PSS.DDD) inheriting from the CspSubElementObsDevice d
evice of Base classes.

PssPipeline device - CTRL

The PssPipeline device (CTRL) inherits from base classes CspSubElementObsDevice device
In the following are not reported the properties and attributes inherited.

Properties

Properties are set in the Tango Database.

	Attribute Name

	Type

	Note/Description

	NodeIP

	Type: ‘DevString’

	The IP address of the PSS node where the cheetah pipeline will be running

	PipelineName

	Type: ‘DevString’

	The pipeline name

	CheetahOutputFile

	Type: ‘DevString’

	The filename where cheetah stdout adn stderr will be stored

	CheetahConfigFile

	Type: ‘DevString’

	The filename where cheetah input configuration data wil be stored

	CheetahExecutable

	Type: ‘DevString’

	A string containing the command script to execute Cheetah.

	CheetahUserPasswd

	Type: (‘DevString’,)

	A Tuple containing the username and password for the remote connection to Cheetah

Attributes

	Attribute Name

	Attribute Type

	Note/Description

	lastScanConfiguration

	Type: ‘DevString’

Access: READ

	The last valid scan configuration.

	pipelineProgress

	Type: ‘DevUShort’

Access: READ

	The cheetah pipeline progress percentage

	cheetahVersion

	Type: ‘DevString’

Access: READ

	The cheetah pipeline version

	cheetahPid

	Type: ‘DevLong’

Access: RE

	The filename where cheetah input configuration data wil be stored

	cheetahLogLine

	Type: ‘DevString’

Access: RE

	Cheetah pipeline log line

	isCommunicating

	Type: ‘DevBoolean’

Access: READ

	A Tuple containing the username and password for the remote connection to Cheetah

	NodeIP

	Type: ‘DevString’

Access: READ

	The PSS node IP address

NOTE: it return the corresponding property

	PipelineName

	Type: ‘DevString’

Access: READ

	The pipeline name

NOTE: it return the corresponding property

Commands

	Command Name

	Input/output args

	Note

	On

	Input: None

Output: (resultCode, resultMsg)

	PSS pipeline: enable (?)

	Off

	Input: None

Output: (resultCode, resultMsg)

	PSS pipeline: disable (?)

	ConfigureScan

	Input: DevString

JSON formatted with scan configuration

Output: (resultCode, resultMsg)

	

	GoToIdle

	Input: None

Output: (resultCode, resultMsg)

	PssPipeline transits to IDLE obsState

	Scan

	Input: scan ID (integer)

Output: (resultCode, resultMsg)

	Start a Scan

	EndScan

	Input: None

Output: (resultCode, resultMsg)

	End a Scan

	Abort

	Input: None

Output: (resultCode, resultMsg)

	End a Scan

Signal abort (see below)

	ObsReset

	Input: None

Output: (resultCode, resultMsg)

	Reset Pipeline from FAULT/ABORTED
to IDLE obsState.

Cheetah command line interface

Cheetah program can be started with a command line of the form

./cheetah/pipeline/cheetah_pipeline –config cheetah.xml -p
Dedispersion –log-level log

The different pipelines which can be selected are:

	Empty

	Dedispersion

	RfiDetectionPipeline

	SinglePulseHandler

For the input stream (the data source) there are the possibility to
create synthetic internally generated data or external sources. We chose
to use a standard file generated by sigproc fake (ska.dat hardcoded
in the standard config file).
The output of cheetah is on the standard output and it has a standard
syslog format:

	[log][tid=140474636963584][/home/baffa/src/ska/cheetah/cheetah/../cheetah/pipeline/detail/BeamLauncher.cpp:148][1600767420]Creating Beams….

	[warn][tid=140474636963584][/home/baffa/src/ska/cheetah/cheetah/../cheetah/tdas/detail/Tdas.cpp:76][1600767420]No Time Domain Accelerated Search algorithm has been specified

	[log][tid=140474636963584][/home/baffa/src/ska/cheetah/cheetah/../cheetah/pipeline/detail/BeamLauncher.cpp:171][1600767420]Finished creating pipelines

	[log][tid=140474636963584][/home/baffa/src/ska/cheetah/cheetah/../cheetah/pipeline/detail/BeamLauncher.cpp:223][1600767420]Starting Beam: identifier to distinguish between other similar type blocks

	[log][tid=140474527926016][/home/baffa/src/ska/cheetah/cheetah/../cheetah/sps/detail/Sps.cpp:110][1600767420]setting dedispersion buffer size to 2048 spectra

	[log][tid=140474527926016][/home/baffa/src/ska/cheetah/cheetah/../cheetah/sps/detail/Sps.cpp:113][1600767420]setting buffer overlap to 1514 spectra

	[log][tid=140474527926016][/home/baffa/src/ska/cheetah/cheetah/sigproc/src/SigProcFileStream.cpp:334][1600767424]resizing to 1024

	[log][tid=140474527926016][/usr/local/include/panda/detail/Pipeline.cpp:63][1600767424]End of stream

Cheetah pipeline is a stand alone CLI program with its main output on
stdout.
It runs on an different server of the Tango Device Server. We have implemented a class, called PipelineCommunicationManager, that have the skeleton of connection.
It has to be specialized with the protocol to use with connection. At the present the connection is made via SSH.

This command line approach makes Cheetah program completely deaf while
running: it is not foreseen a communication channel from CONTROL to the
pipeline. The only possible channel is the use of Posix signals. We list
here few useful ones with default behaviour:

	SIGKILL 9 Kill signal → Terminate

	SIGTERM 15 Termination signal → Terminate

	SIGUSR1 30,10,16 User-defined → Terminate

	SIGSTOP 17,19,23 Stop process → Terminate

The use of SIGKILL, SIGTERM and SIGSTOP are clear and related to
Abort (first and second) and to Stop (last). We have the opportunity to
implement a custom channel by the use of SIGUSR1.

NOTE: At the present implementation both Abort and EndScan are sending a Kill Signal

Project’s API

PSS.LMC Ctrl Pipeline API

	PssCtrlPipeline Tango Device

	PssCtrlPipeline Component Manager

PSS.LMC modules API

	Manager
	Pipeline Communication Manager

	Pipeline Component Manager Configuration

	State Models
	Health State Model

PSS Ctrl Pipeline Tango Device

	
class ska_pss_lmc.pipeline.pipeline_ctrl_device.PipelineCtrlDevice(*args, **kwargs)

	Bases: CspSubElementObsDevice

PSS Pipeline Control Tango device.

Device Properties:

	NodeIP
	
	The IP address of the PSS node where the cheetah pipeline
will be running

	Type:’DevString

	PipelineName
	
	The pipeline name

	Type:’DevString’

	CheetahOutputFile
	
	The filename where cheetah stdout adn stderr will be stored

	Type:’DevString’

	CheetahConfigFile
	
	The filename where cheetah input configuration data will
be stored

	Type:’DevString’

	CheetahExecutable
	
	A string containing the command script to execute Cheetah

	Type:’DevString’

	CheetahUserPasswd
	
	A Tuple containing the username and password for the
remote connection to Cheetah

	Type: (‘DevString’,)

	
_init_state_model()

	Override base method.

Configure some device attributes to push events from the code.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
create_component_manager()

	Create and return the Pss Pipeline Control Component Manager.

	Return type

	PipelineCtrlComponentManager

	
_component_state_changed(fault=False, power=None, configured=None, scanning=None, obsfault=None, **kwargs)

	Update the state of the controlled component.

The device reports only a sub-set of the possible states of the
controlled component (cheetah pipeline). These are:

	DISABLE: the device is not trying to connect to the component
(default state at device startup)

	UNKNOWN: the devices trying to connect to the PSS node where
the software component will be running but the connection is
not established

	ON: the device is connected with the PSS node; the software
component might or not be in running.

	FAULT: the controlled component is experiencing a fault condition

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_force_transition_to_obs_state(obs_state)

	Force the observing state machine to a state.

Use the state machine auto transitions to force the
transition to a not allowed state.

	Parameters

	obs_state (ObsState [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/control_model.html#ska_tango_base.control_model.ObsState]) – the desired observing state

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_communication_state_changed(communication_state)

	Update the PipelineCtrlDevice communication status.

	Parameters

	communication_state (CommunicationStatus [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/control_model.html#ska_tango_base.control_model.CommunicationStatus]) – the status of communication with the
controlled component (cheetah pipeline)

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
update_attribute(attribute_name, attribute_value)

	General method invoked to push an event on a device attribute.

	Parameters

	
	attribute_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the TANGO attribute name

	attribute_value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – the attribute value

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
class InitCommand(*args, **kwargs)

	Bases: InitCommand

Class that implements device initialisation for the device.

	
do()

	Initialise the attributes and properties of the device.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ResultCode [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/commands.html#ska_tango_base.commands.ResultCode], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A tuple containing a return code and a string
message indicating status. The message is for
information purpose only.

	
class CheckLongRunningCommandStatusCommand(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: FastCommand [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/commands.html#ska_tango_base.commands.FastCommand]

The command class for the CheckLongRunningCommandStatus command.

	
do(argin)

	Determine the status of the command ID passed in, if any.

	Check command_result to see if it’s finished.

	Check command_status to see if it’s in progress

	Check command_ids_in_queue to see if it’s queued

Note: this method has been overridden to fix an issue in
the BC implementation.

	Parameters

	argin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command ID

	Returns

	The resultcode for this command and the string of
the TaskStatus

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]
(ResultCode.OK, str [https://docs.python.org/3/library/stdtypes.html#str])

	
pipelineProgress()

	Return the cheetah pipeline progress.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
cheetahVersion()

	Return the cheetah version.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
cheetahPid()

	Return the PID of the cheetah pipeline process.

The attribute is stored into the TANGO DB as memorized attribute”
so that on device restart it’s possible to recover the connection ”
to the cheetah pipeline process

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
cheetahLogLine()

	Return the cheetah log, updated line by line

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
isCommunicating()

	Return the device communicating status.

Return a boolean flag indicating whether the TANGO device is
communicating with the controlled component.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
nodeIP()

	Return the pss node IP.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pipelineName()

	Return the cheetah pipeline name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
read_lastScanConfiguration()

	Return the last programmed configuration.

PSS Ctrl Pipeline Component Manager

	
class ska_pss_lmc.pipeline.pipeline_component_manager.PipelineCtrlComponentManager(max_workers, properties, communication_status_changed_callback, component_state_changed_callback, update_device_attribute_cbk, logger=None)

	Bases: TaskExecutorComponentManager

A base component manager for PSS Pipeline Control Device.

	
property pipeline_configured: bool [https://docs.python.org/3/library/functions.html#bool]

	Return a flag that states if the pipeline is already configured. 3

It is used in case of re-configuration by the _configure_scan
method to properly trigger the state machine.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property is_communicating: bool [https://docs.python.org/3/library/functions.html#bool]

	Return whether communication with the component is established.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	whether there is currently a connection to the
component

	
property log_line: str [https://docs.python.org/3/library/stdtypes.html#str]

	Stores the last line of pipeline log

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property pipeline_progress: int [https://docs.python.org/3/library/functions.html#int]

	Stores the last line of percentage progress of the pipeline

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property cheetah_version: str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the version of Cheetah pipeline in use.

NOTE: to be implemented

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property cheetah_pid: int [https://docs.python.org/3/library/functions.html#int]

	Return the pid of the cheetah process

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property scan_configuration: str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the JSON script used to configure the pipeline.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
create_communication_manager(logger)

	Instantiate the communication manager to access Cheetah.

	Parameters

	logger (Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – a logger for this instance to use.

	Return type

	SshAccess

	
update_component_state(**kwargs)

	Handle a change in component state.

Override the BaseComponentManager _update_component_state()
method.
It invokes the device _component_state_changed method that
performs action on the state machine, as required.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_push_component_state_update(**kwargs)

	

	
start_communicating()

	Try to open a connection with the PSS Node.

Open a channel with this instance of the component manager
and the software component (cheetah pipeline).
Submit the _start_communicating method
Initial communication status is DISABLED.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_start_communicating_callback(status, communication_status=None, exception=None, message=None)

	Task callback passed when submitting the task of _start_communicating.

	Param

	status: the status of the task

	Param

	communicationStatus: the status of communication to be
reported to the Pipeline device

	Param

	exception: possible exception raised when submitting the task

	Param

	message: possible message received when submitting the task

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_start_communicating(task_callback=None, task_abort_event=None)

	Task submitted by start_communicating.

On failure the communication status is reported as NOT_ESTABLISHED
and the adminMode as ONLINE/MAINTENANCE.
The state of the device is set to UNKNOWN.
Need to re-try the connection.

	Param

	task_callback: Task callback passed during the
submission of the task

	Param

	task_abort_event: the abort event (still not implemented)

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_monitor_scan()

	Method invoked at connection when the pipeline process is
running.

	
stop_communicating()

	Close connection with the software component.

Close the ssh channel between this instance of the component manager
and the controlled software component (cheetah).
The communication state variable is set to DISCONNECTED and
the adminMode to OFFLINE.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
end_scan(task_callback=None)

	Shutdown pipeline.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TaskStatus [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/executor.html#ska_tango_base.executor.TaskStatus], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
_endscan(task_callback=None, task_abort_event=None)

	

	
abort(task_callback=None)

	Terminate pipeline.

If the cheetah pipeline is running, it is stopped.
If the command is invoked when no observation is in running,
the device transition to ABORTED.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TaskStatus [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/executor.html#ska_tango_base.executor.TaskStatus], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
_abort(task_callback=None, task_abort_event=None)

	Task submitted by the task executor on abort request.

Check if the pipeline is running and in this case, it sets the
abort event and invokes the termination of the process.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
configure_scan(json_configuration, task_callback=None)

	Store the configuration file on PSS Node.

The received configuration file is translated in XML format and stored
on the PSS node to be used at pipeline startup.

The original configuration in JSON format is also stored into an
instance property.

	Param

	json_configuration: a string containing the Json configuration

	Param

	task_callback: the callback invoked when command ends

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TaskStatus [https://developer.skatelescope.org/projects/ska-tango-base/en/latest/api/executor.html#ska_tango_base.executor.TaskStatus], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
_config_scan(json_configuration, task_callback=None, task_abort_event=None)

	

	
scan(scan_id, task_callback=None)

	Start cheetah pipeline on the PSS Node.

Run Cheetah pipeline This method is meant to run in its own worker
thread, as it is a long running command.

	Param

	scan_id: an integer the identify the scan

	Param

	task_callback: the callback invoked when command ends

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_scan(cmd_string, task_callback=None, task_abort_event=None)

	Task submitted by the active thread of the pool.

	Parameters

	
	cmd_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – the command line to run cheetah

	task_callback (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – the CommandTracker callback invoked when
the command complete

	task_abort_event (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Event [https://docs.python.org/3/library/threading.html#threading.Event]]) – the abort event

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_parse_logs(task_callback=None)

	Parse and forward logs from the cheetah application.

	Parameters

	task_callback (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – CommandTracker method invoked on
command completion.

	
reset_to_idle(task_callback=None)

	Submit a task to reset the observing state to IDLE.

This method is invoked both by the ObsReset and GoToIdle commands.

	Parameters

	task_callback (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – CommandTRacker method invoked on
command completion.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a tuple with the task status and a message

	
obsreset(task_callback=None)

	Reset the device from a FAULT/ABORT condition.

	Parameters

	task_callback (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – CommandTRacker method invoked on
command completion.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a tuple with the task status and a message

	
deconfigure(task_callback=None)

	Transition the device from READY to IDLE.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a tuple with the task status and a message

	
_reset_to_idle(task_callback=None, task_abort_event=None)

	Task submitted by the reset_to_idle method.

	Parameters

	
	task_callback (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – CommandTRacker method invoked on
command completion.

	task_abort_event (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Event [https://docs.python.org/3/library/threading.html#threading.Event]]) – the shared event to signal an abort request.

Manager subpackage

	Pipeline Communication Manager

	Pipeline Component Manager Configuration

Pipeline Communication Manager

	
class ska_pss_lmc.manager.communication_manager.PipelineCommunicationManager(logger=None)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Communicate with Cheetah

	
_pid = None

	

	
property get_pid: int [https://docs.python.org/3/library/functions.html#int]

	Return process id

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract connect()

	Establish connection

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	successful of connection

	
abstract disconnect()

	Close connection

	
abstract start(cmd)

	Start Cheetah pipeline

	Parameters

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – command to be executed

	
abstract is_running()

	Return if cheetah is currently running

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	if cheetah process is running

	
abstract kill()

	Kill Cheetah pipeline process

	
shutdown()

	Gracefully shutdown cheetah, not yet supported in cheetah

	
abstract write_config(config)

	Write cheetah configuration

	Parameters

	config (xml.etree.ElementTree) – cheetah xml config

	
reload_config()

	Reload configuration while cheetah is running.
Mentioned by chris as future potential addition to cheetahs signals
Unclear if this actually can be mapped to the obs state machine
Maybe we would just shut down cheetah, and reload with the new config

	
delete_config()

	Delete the configuration file from the PSS node.
To be invoked by ObsReset

	
abstract get_logs()

	Get logs from Cheetah process

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	iterator over lines of log entry

	
_abc_impl = <_abc_data object>

	

	
class ska_pss_lmc.manager.communication_manager.SshAccess(host, user, password=None, private_key_path=None, logger=None)

	Bases: PipelineCommunicationManager

Access Cheetah over ssh

NOTE: there are several exceptions that paramiko library might throw
when trying to connect to the ssh server, executing commands, etc. They
shall be handled at component manager level.

	
log_input = None

	

	
client = None

	

	
host = None

	

	
user = None

	

	
password = None

	

	
private_key_path = None

	

	
connect()

	Establish connection

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
disconnect()

	Close connection

	
start(cmd)

	Start Cheetah pipeline

	
fetch_pid()

	Fetch pid stored on cheetah host

	
is_running()

	Check if the pipeline is running on the server

return: a flag that states whether the pipeline is running

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
kill()

	Kill Cheetah pipeline process

	
get_logs()

	Get logs from Cheetah process

	Returns

	iterator over lines of log entry

	
_close_logs()

	Send Ctrl+c to the tail process

Close the log reading process

	
write_config(config)

	Write cheetah configuration file.

	Parameters

	config (xml.etree.ElementTree) – cheetah xml config

	
delete_config()

	Delete cheetah configuration file.
TODO: to be implemented

	
_abc_impl = <_abc_data object>

	

	
class ska_pss_lmc.manager.communication_manager.SubprocessAccess(pid=None, logger=None)

	Bases: PipelineCommunicationManager

Access Cheetah via a subprocess

	
process = None

	

	
connect()

	Connect

	
_abc_impl = <_abc_data object>

	

	
disconnect()

	Disconnect

	
start(cmd)

	Start cheetah process

	
kill()

	kill cheetah process

	
write_config(config)

	write cheetah config

	
delete_config()

	Delete cheetah configuration file.
TODO: to be implemented

Pipeline Component Manager Configuration

	
class ska_pss_lmc.manager.manager_configuration.ComponentManagerConfiguration(dev_name, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to store the device properties of the controlling TANGO Device to
pass to the ComponentManager.

	
get_device_properties()

	Retrieve the list of the Tango properties of the device registered
within the TANGO DB.

Format the information as a dictionary where each entry is the
property name and the value is the property value (as a string).

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A dictionary with the property name and the associated value.

	
add_attributes()

	Add the device properties as attribute of the class.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Model subpackage

	Health State Model

Health State Model

	
class ska_pss_lmc.model.health_state_model.HealthStateModel(init_state, health_changed_callback, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple health model the supports.

	HealthState.OK – when the component is fully operative.

	
	HealthState.UNKNOWN – when communication with the component is not
	established.

	HealthState.FAILED – when the component has faulted

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 ska_pss_lmc	

 	
 	
 ska_pss_lmc.manager	

 	
 	
 ska_pss_lmc.model	

Index

 M
 | S

M

 	
 	
 module

 	ska_pss_lmc.manager

 	ska_pss_lmc.model

S

 	
 	
 ska_pss_lmc.manager

 	module

 	
 	
 ska_pss_lmc.model

 	module

 nav.xhtml

 Table of Contents

 		
 PSS LMC documentation

 		
 PSS.LMC Description

 		
 PssPipeline device - CTRL

 		
 Properties

 		
 Attributes

 		
 Commands

 		
 Cheetah command line interface

 		
 Project’s API

 		
 PSS.LMC Ctrl Pipeline API

 		
 PssCtrlPipeline Tango Device

 		
 PssCtrlPipeline Component Manager

 		
 PSS.LMC modules API

 		
 Manager

 		
 State Models

_static/img/logo.png
SKAO

_static/minus.png

_static/plus.png

_static/file.png

