
low-cbf-pss-interface Documentation

CSIRO

Aug 14, 2022





Contents

1 Conversion Process 3

2 Indices and tables 5

i



ii



low-cbf-pss-interface Documentation

Shared communications interface between Low CBF and PSS.

The source of truth is the C++ code, used directly by PSS. CBF will use VHDL derived from this file via a Python
script.

Contents 1



low-cbf-pss-interface Documentation

2 Contents



CHAPTER 1

Conversion Process

The python script ‘translate.py’ does the C++ to VHDL conversion. It requires the castxml command-line utility to be
installed, and the pip package pygccxml.

The most up-to-date information regarding command line arguments is available by running the program with the -h
argument.

$ python3 translate.py -h
usage: translate.py [-h] [--namespace [NAMESPACE]] infile [infile ...] outfile

C++ struct to VHDL translator

positional arguments:
infile
outfile

optional arguments:
-h, --help show this help message and exit
--namespace [NAMESPACE]

• One or more infile arguments specify the C++ source files to read

• One VHDL output file is generated, as specified by outfile (use ‘-’ to output to standard out)

• An optional namespace can be provided - if not supplied, the global namespace is used. This may be problem-
atic if your source files include libraries containing structs.

Note that structs with names beginning with ‘__’ are ignored. This was done to avoid producing VHDL for some
library internal structures.

Bit widths of C++ data types are not always deduced by the parser (reason unknown). If pygccxml does not provide a
byte width, we read numbers from the type name and assume they are bits.

I suggest restricting the C++ source to the (u)int<n>_t types from cstdint - this provides clarity for C++ readers too.

3



low-cbf-pss-interface Documentation

4 Chapter 1. Conversion Process



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5


	Conversion Process
	Indices and tables

